Article

Protruding vulva mutants identify novel loci and Wnt signaling factors that function during Caenorhabditis elegans vulva development.

Department of Developmental Biology, Stanford University, Stanford, California 94305, USA.
Genetics (Impact Factor: 4.39). 12/2000; 156(3):1097-116.
Source: PubMed

ABSTRACT The Caenorhabditis elegans vulva develops from the progeny of three vulval precursor cells (VPCs) induced to divide and differentiate by a signal from the somatic gonad. Evolutionarily conserved Ras and Notch extracellular signaling pathways are known to function during this process. To identify novel loci acting in vulval development, we carried out a genetic screen for mutants having a protruding-vulva (Pvl) mutant phenotype. Here we report the initial genetic characterization of several novel loci: bar-1, pvl-4, pvl-5, and pvl-6. In addition, on the basis of their Pvl phenotypes, we show that the previously identified genes lin-26, mom-3/mig-14, egl-18, and sem-4 also function during vulval development. Our characterization indicates that (1) pvl-4 and pvl-5 are required for generation/survival of the VPCs; (2) bar-1, mom-3/mig-14, egl-18, and sem-4 play a role in VPC fate specification; (3) lin-26 is required for proper VPC fate execution; and (4) pvl-6 acts during vulval morphogenesis. In addition, two of these genes, bar-1 and mom-3/mig-14, are known to function in processes regulated by Wnt signaling, suggesting that a Wnt signaling pathway is acting during vulval development.

1 Bookmark
 · 
50 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NM23-H1 (also known as NME1) was the first identified metastasis suppressor, which displays a nucleoside diphosphate kinase (NDPK) and histidine protein kinase activity. NDPKs are linked to many processes, such as cell migration, proliferation, differentiation, but the exact mechanism whereby NM23-H1 inhibits the metastatic potential of cancer cells remains elusive. However, some recent data suggest that NM23-H1 may exert its anti-metastatic effect by blocking Ras/ERK signaling. In mammalian cell lines NDPK-mediated attenuation of Ras/ERK signaling occurs through phosphorylation (thus inactivation) of KSR (kinase suppressor of Ras) scaffolds. In this review I summarize our knowledge about KSR's function and its regulation in mammals and in C. elegans. Genetic studies in the nematode contributed substantially to our understanding of the function and regulation of the Ras pathway (i.e. KSR's discovery is also linked to the nematode). Components of the RTK/Ras/ERK pathway seem to be highly conserved between mammals and worms. NDK-1, the worm homolog of NM23-H1 affects Ras/MAPK signaling at the level of KSRs, and a functional interaction between NDK-1/NDPK and KSRs was first demonstrated in the worm in vivo. However, NDK-1 is a factor, which is necessary for proper MAPK activation, thus it activates rather than suppresses Ras/MAPK signaling in the worm. The contradiction between results in mammalian cell lines and in the worm regarding NDPKs' effect exerted on the outcome of Ras signaling might be resolved, if we better understand the function, structure and regulation of KSR scaffolds.
    Journal of Molecular Signaling 01/2014; 9:4.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: C. elegans is extensively used to study the Wnt-pathway and most of the core-signalling components are known. Four β-catenins are important gene expression regulators in Wnt-signalling. One of these, bar-1, is part of the canonical Wnt-pathway. Together with Wnt effector pop-1, bar-1 forms a transcription activation complex which regulates the transcription of downstream genes. The effects of bar-1 loss-of-function mutations on many phenotypes have been studied well. However, the effects on global gene expression are unknown. Here we report the effects of a loss-of-function mutation bar-1(ga80). By analysing the transcriptome and developmental phenotyping we show that bar-1(ga80) impairs developmental timing. This developmental difference confounds the comparison of the gene expression profile between the mutant and the reference strain. When corrected for this difference it was possible to identify genes that were directly affected by the bar-1 mutation. We show that the Wnt-pathway itself is activated, as well as transcription factors elt-3, pqm-1, mdl-1 and pha-4 and their associated genes. The outcomes imply that this response compensates for the loss of functional bar-1. Altogether we show that bar-1 loss-of function leads to delayed development possibly caused by an induction of a stress response, reflected by daf-16 activated genes.
    Scientific Reports 01/2014; 4:4926. · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Microtubules (MTs) are cytoskeletal polymers that undergo dynamic instability, the stochastic transition between growth and shrinkage phases. MT dynamics are required for diverse cellular processes and, while intrinsic to tubulin, are highly regulated. However, little is known about how MT dynamics facilitate or are regulated by tissue biogenesis and differentiation. We imaged MT dynamics in a smooth muscle-like lineage in intact developing Caenorhabditis elegans. All aspects of MT dynamics change significantly as stem-like precursors exit mitosis and, secondarily, as they differentiate. We found that suppression, but not enhancement, of dynamics perturbs differentiated muscle function in vivo. Distinct ensembles of MT-associated proteins are specifically required for tissue biogenesis versus tissue function. A CLASP family MT stabilizer and the depolymerizing kinesin MCAK are differentially required for MT dynamics in the precursor or differentiated cells, respectively. All of these multidimensional phenotypic comparisons were facilitated by a data display method called the diamond graph.
    Developmental Cell 04/2014; 29(2):203-216. · 12.86 Impact Factor

Full-text (2 Sources)

Download
0 Downloads
Available from
Sep 4, 2014