Article

Hypothalamic arousal regions are activated during modafinil-induced wakefulness.

Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 12/2000; 20(22):8620-8.
Source: PubMed

ABSTRACT Modafinil is an increasingly popular wake-promoting drug used for the treatment of narcolepsy, but its precise mechanism of action is unknown. To determine potential pathways via which modafinil acts, we administered a range of doses of modafinil to rats, recorded sleep/wake activity, and studied the pattern of neuronal activation using Fos immunohistochemistry. To contrast modafinil-induced wakefulness with spontaneous wakefulness, we administered modafinil at midnight, during the normal waking period of rats. To determine the influence of circadian phase or ambient light, we also injected modafinil at noon on a normal light/dark cycle or in constant darkness. We found that 75 mg/kg modafinil increased Fos immunoreactivity in the tuberomammillary nucleus (TMN) and in orexin (hypocretin) neurons of the perifornical area, two cell groups implicated in the regulation of wakefulness. This low dose of modafinil also increased the number of Fos-immunoreactive (Fos-IR) neurons in the lateral subdivision of the central nucleus of the amygdala. Higher doses increased the number of Fos-IR neurons in the striatum and cingulate cortex. In contrast to previous studies, modafinil did not produce statistically significant increases in Fos expression in either the suprachiasmatic nucleus or the anterior hypothalamic area. These observations suggest that modafinil may promote waking via activation of TMN and orexin neurons, two regions implicated in the promotion of normal wakefulness. Selective pharmacological activation of these hypothalamic regions may represent a novel approach to inducing wakefulness.

0 Followers
 · 
92 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In patients with obstructive sleep apnea, airway obstruction during sleep produces hypercapnia which in turn activates respiratory muscles that pump air into the lungs (e.g. the diaphragm) and that dilate and stabilize the upper airway (e.g., the genioglossus). We hypothesized that these responses are facilitated by glutamatergic neurons in the parabrachial complex (PB) that respond to hypercapnia and project to premotor and motor neurons that innervate the diaphragm and genioglossus muscles. To test this hypothesis we combined c-Fos immunohistochemistry with in situ hybridization for vGluT2 or GAD67 or with retrograde tracing from the ventrolateral medullary region that contains phrenic premotor neurons, the phrenic motor nucleus in the C3-C5 spinal ventral horn, or the hypoglossal motor nucleus. We found that hypercapnia (10% CO2 for 2 hours) activated c-Fos expression in neurons in the external lateral, lateral crescent (PBcr), and Kölliker-Fuse (KF) PB subnuclei and that most of these neurons were glutamatergic and virtually none GABAergic. Numerous CO2 -responsive neurons in the KF and PBcr were labeled after retrograde tracer injection into the ventrolateral medulla or hypoglossal motor nuclei, and in the KF after injections into the spinal cord, making them candidates for mediating respiratory-facilitatory and upper airway stabilizing effects of hypercapnia. This article is protected by copyright. All rights reserved. Copyright © 2014 Wiley Periodicals, Inc., A Wiley Company.
    The Journal of Comparative Neurology 04/2015; 523(6). DOI:10.1002/cne.23720 · 3.51 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Modafinil (MOD) and its R-enantiomer (R-MOD) are approved medications for narcolepsy and other sleep disorders. They have also been used, off-label, as cognitive enhancers in populations of patients with mental disorders, including substance abusers that demonstrate impaired cognitive function. A debated nonmedical use of MOD in healthy individuals to improve intellectual performance is raising questions about its potential abuse liability in this population. MOD has low micromolar affinity for the dopamine transporter (DAT). Inhibition of dopamine (DA) reuptake via the DAT explains the enhancement of DA levels in several brain areas, an effect shared with psychostimulants like cocaine, methylphenidate, and the amphetamines. However, its neurochemical effects and anatomical pattern of brain area activation differ from typical psychostimulants and are consistent with its beneficial effects on cognitive performance processes such as attention, learning, and memory. At variance with typical psychostimulants, MOD shows very low, if any, abuse liability, in spite of its use as a cognitive enhancer by otherwise healthy individuals. Finally, recent clinical studies have focused on the potential use of MOD as a medication for treatment of drug abuse, but have not shown consistent outcomes. However, positive trends in several result measures suggest that medications that improve cognitive function, like MOD or R-MOD, may be beneficial for the treatment of substance use disorders in certain patient populations.
    Psychopharmacology 08/2013; DOI:10.1007/s00213-013-3232-4 · 3.99 Impact Factor

Preview

Download
1 Download
Available from