Article

Growth arrest and cell death in the breast tumor cell in response to ionizing radiation and chemotherapeutic agents which induce DNA damage.

Department of Pharmacology, Virginia Commonwealth University/Medical College of Virginia, Richmond 23298, USA.
Breast Cancer Research and Treatment (Impact Factor: 4.47). 09/2000; 62(3):223-35. DOI: 10.1023/A:1006414422919
Source: PubMed

ABSTRACT Breast tumor cells are relatively refractory to apoptosis in response to modalities which induce DNA damage such as ionizing radiation and the topoisomerase II inhibitor, adriamycin. Various factors which may modulate the apoptotic response to DNA damage include the p53 status of the cell, levels and activity of the Bax and Bcl-2 families of proteins, activation of NF-kappa B, relative levels of insulin like growth factor and insulin-like growth factor binding proteins, activation of MAP kinases and PI3/Akt kinases, (the absence of) ceramide generation and the CD95 (APO1/Fas) signaling pathway. Prolonged growth arrest associated with replicative senescence may represent an alternative and reciprocal response to DNA-damage induced apoptosis that is p53 and/or p21waf1/cip1 dependent while delayed apoptosis may occur in p53 mutant breast tumor cells which fail to maintain the growth-arrested state. Clearly, the absence of an immediate apoptotic response to DNA damage does not eliminate other avenues leading to cell death and loss of self-renewal capacity in the breast tumor cell. Nevertheless, prolonged growth arrest (even if ultimately succeeded by apoptotic or necrotic cell death) could provide an opportunity for subpopulations of breast tumor cells to recover proliferative capacity and to develop resistance to subsequent clinical intervention.

0 Bookmarks
 · 
52 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Silent mating-type information regulation 2, homolog 1 (SIRT1) represents an NAD(+)-dependent deacetylase that regulates the processes of stress response and cell survival. However, the functions of SIRT1 in stress- and drug-induced apoptosis remain elusive. The present study was designed to determine the effects of SIRT1 in tumor cells subjected to antitumor agent treatment and to identify the underlying mechanisms during the stress response. Several of the most commonly used antitumor medications [arsenic trioxide (As2O3), Taxol and doxorubicin (doxo)] were selected to treat MCF-7 human breast cancer cells with or without nicotinamide (NAM) inhibition. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) was used to test cell viability. SIRT1 expression was tested by immunoblot analysis. The typical hallmarks of apoptosis (chromatin condensation, apoptotic bodies, sub G1 change and Annexin V(+)/PI(-) stained cells) were detected by Hoechst 33342 staining, flow cytometry and Annexin V(+)/PI(-) staining following NAM treatment. The cleavage of poly(ADP-ribose) polymerase (PARP) and caspases 9, 6 and 7 was detected through immunoblot analysis. Augmented SIRT1 expression was observed only at low concentrations (>80% cell viability) and the inhibition of SIRT1 deacetylase by NAM decreased the viability of the cancer cells exposed to low concentrations of antitumor agents. NAM induced typical apoptosis in the MCF-7 tumor cells, accompanied by the activation of the caspase cascade. SIRT1 promotes cellular survival at certain stress levels by its deacetylase function. The SIRT1 deacetylase inhibitor, NAM, triggers the activation of the caspase cascade and induces typical apoptosis in MCF-7 cells.
    Oncology letters 08/2013; 6(2):600-604. · 0.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite marked developments in the field of cryopreservation of cells and tissues for research and therapeutic applications, post-thaw cell death remains a significant drawback faced by cryobiologists. Post cryopreservation apoptosis and necrosis are normally observed within 6 to 24 h after post-thaw culture. As a result, massive loss of cell viability and cellular function occur due to cryopreservation. However, in this new generation of cryopreservation science, scientists in this field are focusing on incorporation of apoptosis and necrosis inhibitors (zVAD-fmk, p38 MAPK inhibitor, ROCK inhibitor, etc.) to cryopreservation and post-thaw culture media. These inhibitors target and inhibit various proteins such as caspases, proteases, and kinases, involved in the cell death cascade, resulting in reduced intensity of apoptosis and necrosis in the cryopreserved cells and tissues, increased cell viability, and maintenance of cellular function; thus improved overall cryopreservation efficiency is achieved. The present article provides an overview of various cell death pathways, molecules mediating cryopreservation-induced apoptosis and the potential of certain molecules in targeting cryopreservation-induced delayed-onset cell death.
    Biopreservation and Biobanking 02/2014; 12(1):23-34. · 1.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Radiation therapy is a staple cancer treatment approach that has significantly improved local disease control and the overall survival of cancer patients. However, its efficacy is still limited by the development of radiation resistance and the presence of residual disease after therapy that leads to cancer recurrence. Radiation impedes cancer cell growth by inducing cytotoxicity, mainly caused by DNA damage. However, radiation can also simultaneously induce multiple pro-survival signaling pathways, such as those mediated by AKT, ERK and ATM/ATR, which can lead to suppression of apoptosis, induction of cell cycle arrest and/or initiation of DNA repair. These signaling pathways act conjointly to reduce the magnitude of radiation-induced cytotoxicity and promote the development of radioresistance in cancer cells. Thus, targeting these pro-survival pathways has great potential for the radiosensitization of cancer cells. In the present review, we summarize the current literature on how these radiation‑activated signaling pathways promote cancer cell survival.
    International Journal of Oncology 08/2014; · 2.66 Impact Factor