Evidence that the sigma(1) receptor is not directly coupled to G proteins.

Neuroscience Program, The George Washington University Medical Center, Washington, DC 20037, USA.
European Journal of Pharmacology (Impact Factor: 2.68). 12/2000; 408(2):117-25. DOI: 10.1016/S0014-2999(00)00774-3
Source: PubMed

ABSTRACT Sigma (sigma) receptors have been implicated in psychosis, cognition, neuroprotection, and locomotion in the central nervous system. The signal transduction mechanisms for sigma receptors have not been fully elucidated. In this study, we examined the possible coupling between sigma(1) receptors and heterotrimeric guanine nucleotide-binding proteins (G proteins) in rodent brain. In sigma(1) receptor-rich cerebellar membrane preparations, the competitive binding curves of two sigma(1) agonists, (+)pentazocine and 1S,2R-(-)-cis-N-[2-(3, 4-dichlorophenyl)ethyl]-N-methyl-2-(1-pyrrolidinyl)cyclohexylamine (BD737), were unaffected by the addition of 10 microM guanosine-5'-O-(gamma-thio)-triphosphate (GTPgammaS). Neither (+)pentazocine (1-100 microM) nor BD737 (0.01-10 microM) stimulated GTPase activities significantly above basal levels in agonist-stimulated GTPase activity assays in cerebellar membranes. Furthermore, when using the method of agonist-stimulated [35S]GTPgammaS binding as assessed by autoradiography, we did not observe significant stimulation of [35S]GTPgammaS binding in rat brain sections by either (+)pentazocine or BD737. The above results demonstrate that the sigma(1) receptor is not likely be directly coupled to G proteins.

  • Source
    Psiquiatria Biologica 01/2004; 11(2):41-57.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Starting from (S)- or (R)-aspartate four synthetic strategies were explored to prepare hydroxyethyl substituted piperazines with different substituents at the N-atoms. σ receptor affinity was recorded using receptor material from both animal and human origin. σ1 affinities determined with guinea pig brain and human RPMI 8226 tumor cell lines differed slightly but showed the same tendency. (S)-2-[4-(Cyclohexylmethyl)-1-(naphthalene-2-ylmethyl)piperazin-2-yl]ethanol (7c) revealed the highest affinity at human σ1 receptors (Ki = 6.8 nM). The potent σ1 receptor ligand 7c was able to inhibit selectively the growth of three human tumor cell lines with IC50 values in the low micromolar range. The reduced growth of the RPMI-8226 cell line was caused by apoptosis. The interaction of 7c with the 1 receptor was analyzed in detail using the 3D homology model of the 1 receptor. The calculated free binding energies of all hydroxyethylpiperazines nicely correlate with their recorded affinities towards the human 1 receptor.
    Journal of Medicinal Chemistry 03/2014; 57(7). DOI:10.1021/jm401707t · 5.48 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: ASIC1a channels play a major role in various pathophysiological conditions including depression, anxiety, epilepsy, and neurodegeneration following ischemic stroke. Sigma-1 (σ-1) receptor stimulation depresses the activity of ASIC1a channels in cortical neurons, but the mechanism(s) by which σ-1 receptors exert their influence on ASIC1a remains unknown. Experiments were undertaken to elucidate the signaling cascade linking σ-1 receptors to ASIC1a channels. Immunohistochemical studies showed that σ-1 receptors, ASIC1a and A-kinase anchoring peptide 150 colocalize in the plasma membrane of the cell body and processes of cortical neurons. Fluorometric Ca(2+) imaging experiments showed that disruption of the macromolecular complexes containing AKAP150 diminished the effects of the σ-1 on ASIC1a, as did application of the calcineurin inhibitors, cyclosporin A and FK-506. Moreover, whole-cell patch clamp experiments showed that σ-1 receptors were less effective at decreasing ASIC1a-mediated currents in the presence of the VIVIT peptide, which binds to calcineurin and prevents cellular effects dependent on AKAP150/calcineurin interaction. The coupling of σ-1 to ASIC1a was also disrupted by preincubation of the neurons in the G-protein inhibitor, pertussis toxin (PTX). Taken together, our data reveal that σ-1 receptor block of ASIC1a function is dependent on activation of a PTX-sensitive G-protein and stimulation of AKAP150 bound calcineurin.
    Neurochemical Research 06/2014; DOI:10.1007/s11064-014-1324-0 · 2.55 Impact Factor