Article

A novel zidovudine uptake system in microglia.

Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.
Journal of Pharmacology and Experimental Therapeutics (Impact Factor: 3.86). 01/2001; 296(1):141-9.
Source: PubMed

ABSTRACT In the central nervous system (CNS), brain macrophages and microglia are the primary targets of productive human immunodeficiency virus 1 (HIV-1) infection. Zidovudine (ZDV), a thymidine derivative, has been reported to reduce the progression of the disease and prolong survival in patients with acquired immunodeficiency syndrome (AIDS) and AIDS dementia complex. Although a restricted ZDV distribution has been observed in the CNS, its accumulation in brain parenchyma has not been examined. We have investigated the uptake properties of radiolabeled ZDV by a continuous rat microglia cell line (MLS-9) grown as a monolayer on an impermeable surface. Although the organic cations verapamil, mepiperphenidol, quinidine, cimetidine, and N(1)-methylnicotinamide moderately inhibited ZDV uptake, the organic cation probes tetraethylammonium and 1-methyl-4-phenylpyridinium were weak inhibitors. ZDV uptake was significantly increased when the proton gradient was outward (pH(i) 6.3 < pH(o) 7.4; pH(i) approximately 7.1 < pH 8.0), whereas uptake decreased with extracellular acidification (pH(i) approximately 7.1 > pH(o) 6.0) or in the presence of the Na(+)/H(+) ionophore monensin. ZDV uptake was increased under depolarized membrane conditions (i.e., 138 mM K(+) in external medium) and decreased under hyperpolarized conditions (i.e., 2 mM K(+) in external medium), implying a membrane potential dependence. These results suggest that although ZDV transport system in microglia has some specificity features of an organic cation transporter, it involves a carrier, distinct from other cloned organic cation transporters, that is novel in its sensitivity to pH and membrane potential. This system may play a significant role in the transport of other weak organic cation substrates and/or metabolites in brain parenchyma.

Download full-text

Full-text

Available from: Lyanne C Schlichter, Mar 03, 2015
0 Followers
 · 
77 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A novel organic anion transporter selectively expressed at the blood-brain barrier (BBB), originally designated BBB-specific anion transporter type 1 (BSAT1), and now classified as Slco1c1, has been cloned from a BBB genomics program as a partial cDNA; this study describes the cloning and expression of the full-length cDNA from a rat brain capillary cDNA library. Northern analysis revealed the selective expression of the transporter at the BBB, and the transporter was expressed after permanent transfection of human 293 cells with cDNA encoding either the full length or open reading frame mRNA. The full-length transporter cDNA was 2.6 kb, and the mRNA was highly expressed at the rat brain microvasculature, but not in kidney, liver, heart, or lung, or in glial cells or brain glial tumors. Blood-brain barrier-specific anion transporter type 1 expression in 293 cells was poor after the transfection of the full-length cDNA, whereas transporter expression in 293 cells was high after transfection of the open reading frame. The transporter showed asymmetric kinetic properties in comparison of the influx and efflux of model substrates, thyroxine (T4), triiodothyronine (T3), and estradiol-glucuronide (E2G). Thyroxine and T3 inhibited the influx of E2G, but E2G did not inhibit thyroxine influx, and T3 only weakly inhibited the influx of T4. Extracellular E2G stimulated the transefflux of intracellular T4. Blood-brain barrier-specific anion transporter type 1 is a novel organic anion transporter that is a sodium-independent exchanger that may participate in the active efflux of iodothyronines and steroid conjugates at the BBB.
    Journal of Cerebral Blood Flow & Metabolism 03/2008; 28(2):291-301. DOI:10.1038/sj.jcbfm.9600538 · 5.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuronal damage after stroke-associated brain hypoxia is a leading cause of long-term disability and death. The refractoriness to therapeutic strategies for neuroprotection after 3 h post brain ischemia is poorly understood. P-glycoprotein (P-gp), the multidrug resistance gene (MDR-1) product is normally expressed at blood-brain-barrier. P-gp neuronal expression has been demonstrated in refractory epilepsy and after brain ischemia. In this report we investigated the hypoxia-induced neuronal P-gp expression after local injection of CoCl(2) (1-200 mM) in the fronto-parietal cortex of male adult rats (Bregma -1.30 mm) by stereotaxic surgery. P-gp immunostaining of brain slides was analyzed using specific monoclonal antibodies and double immunolabeling was done with specific astrocytic and neuronal markers. Five days after injection of 1 mM CoCl(2), P-gp expression surrounding the lesion site was observed in neurons, astrocytic end-foot on capillary blood vessels and endothelial cells on blood vessels. Higher CoCl(2) doses (200 mM) resulted in additional P-gp immunostaining of the entire astrocytic and neuronal cytoplasm. Electron microscopy (EM) studies showed alterations in neurons as early as 6 h after the CoCl(2) injection. P-gp expression in hypoxic neurons and astrocytic end-foot could potentially impair of drugs access to the brain parenchyma thus suggesting the presence of two P-gp-based pumping systems (one in astrocytes and other in the hypoxic neurons) that are able to behave as a previously unnoticed obstacle for pharmacological strategies of neuroprotection.
    Journal of the Neurological Sciences 08/2007; 258(1-2):84-92. DOI:10.1016/j.jns.2007.03.004 · 2.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Azidothymidine, a nucleoside-analogue reverse transcriptase inhibitor (NRTI), is a commonly used antiretroviral drug in AIDS treatment, however its use is limited by severe toxic side effects due to its influence on mitochondria that result in myopathy, particularly affecting the cardiac muscle. We suggest that effective protection of azidothymidine-induced cardiopathology can be expected from drugs that are capable of targeting mitochondria. Therefore the present study in mice was carried out with mildronate, a cardioprotective drug of the aza-butyrobetaine class, which previously has been shown to act as a highly potent protector of mitochondrial processes. In our study, saline (control), azidothymidine (50 mg/kg), mildronate (50, 100 and 200 mg/kg), and azidothymidine + mildronate (at the doses mentioned) were injected intraperitoneally daily in separate groups of mice for two weeks. At the termination of the experiment, mice were sacrificed, the hearts were removed and cardiac tissue was examined morphologically and immunohistochemically. It was found that azidothymidine, compared to control and mildronate groups, induced major morphologic changes in cardiac tissue, which were manifestated as degeneration and inflammation. These changes were prevented when mildronate was co-administered with azidothymidine. Mildronate also reduced the azidothymidine-induced expression of nuclear factor kappaBp65 (NF-kappaBp65). The obtained data demonstrate a high ability of mildronate of preventing azidothymidine-induced cardiopathologic changes, and suggest mildronate's indirect action on azidothymidine-caused oxidative stress reactions leading to mitochondrial dysfunction. This offers a rational combination of mildronate with azidothymidine or other anti-HIV drugs for beneficial application in AIDS therapy.
    Basic &amp Clinical Pharmacology &amp Toxicology 11/2006; 99(4):323-8. DOI:10.1111/j.1742-7843.2006.pto_543.x · 2.29 Impact Factor