Evidence for genetic linkage of Alzheimer's disease to chromosome 10q

Harvard University, Cambridge, Massachusetts, United States
Science (Impact Factor: 31.48). 01/2001; 290(5500):2302-3. DOI: 10.1126/science.290.5500.2302
Source: PubMed

ABSTRACT Recent studies suggest that insulin-degrading enzyme (IDE) in neurons and microglia degrades Abeta, the principal component of beta-amyloid and one of the neuropathological hallmarks of Alzheimer's disease (AD). We performed parametric and nonparametric linkage analyses of seven genetic markers on chromosome 10q, six of which map near the IDE gene, in 435 multiplex AD families. These analyses revealed significant evidence of linkage for adjacent markers (D10S1671, D10S583, D10S1710, and D10S566), which was most pronounced in late-onset families. Furthermore, we found evidence for allele-specific association between the putative disease locus and marker D10S583, which has recently been located within 195 kilobases of the IDE gene.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: According to the traditional explanations ("old paradigm"), aging is due to the progressive accumulation of heterogeneous damages that are insufficiently contrasted by natural selection. An opposite interpretation ("new paradigm") sees aging as selectively advantageous in terms of supra-individual natural selection, and this implies the indispensable existence of genetically controlled specific mechanisms that determine it. The aim of this work is to expound synthetically the progressive alterations that mark the aging by showing how these changes are clearly defined and regulated by genes. The possibility of such a description, based on sound evidence, is an essential element for the plausibility of the new paradigm, and a fundamental argument against the tenability of the old paradigm.
    Biochemistry (Moscow) 10/2014; 79(10):1004-16. DOI:10.1134/S0006297914100034 · 1.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the most frequent cause of dementia in elderly people. Current therapies are directed against the symptoms and at best slow down the progress of the disease in some cases. Thus, it is of particular importance to find drugs focusing on the origins of AD. Recent studies indicate that soluble oligomers (up to 12mers and higher) of Aβ1−42 are highly neurotoxic at nanomolar levels and probably a major cause for the symptoms of AD. Furthermore, structural similarity was found between the oligomers of several amyloidogenic proteins. A compound that inhibits Aβ aggregation in AD may therefore prevent aggregation in other amyloid diseases as well, with little or no modification to the compounds. These findings indicate that inhibition of oligomer aggregation is an appealing approach for AD drug research. In this study, we show the effects of a library of 18 chemical compounds, based on a 2-pyridone structure which is known to interfere with Aβ assembly, on the formation of oligomers. These molecules fulfil Lipinski’s rule of 5 and thereby should readily pass the blood brain barrier after application. Oligomers of Aβ1−42 were prepared in the absence and presence of these compounds and identified using Western blotting, dot blotting and atomic force microscopy. The toxicity of these preparations was determined by applying them onto neural cell lines and measuring the cell viability with MTT, WST-1 and resazurin based assays. The results indicate that several compounds decreased neurotoxicity of the oligomeric preparations by inhibition of aggregation. Despite the high variation in toxicity between the individual preparations we identified a compound offering both, low toxicity and stable oligomerization inhibiting potency, which will serve as a lead molecule for further development. Also we demonstrate an impact of the applied oligomerization protocol on cell viability. After further optimization we hope our method will prove to be a useful method for screening drug candidates directed against Aβ oligomers.
    09/2007, Degree: Magister rer. nat., Supervisor: Johannes Berger
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Insulin degrading enzyme (IDE) is a zinc metalloprotease that degrades small amyloid peptides such as amyloid-â and insulin. So far the dearth of IDE-specific pharmacological inhibitors impacts the understanding of its role in the physiopathology of Alzheimer's disease, amyloid-â clearance, and its validation as a potential therapeutic target. Hit 1 was previously discovered by high-throughput screening. Here we describe the structure-activity study, that required the synthesis of 48 analogues. We found that while the carboxylic acid, the imidazole and the tertiary amine were critical for activity, the methyl ester was successfully optimized to an amide or a 1,2,4-oxadiazole. Along with improving their activity, compounds were optimized for solubility, lipophilicity and stability in plasma and microsomes. The docking or co-crystallization of some compounds at the exosite or the catalytic site of IDE provided the structural basis for IDE inhibition. The pharmacokinetic properties of best compounds 44 and 46 were measured in vivo. As a result, 44 (BDM43079) and its methyl ester precursor 48 (BDM43124) are useful chemical probes for the exploration of IDE's role. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
    European Journal of Medicinal Chemistry 12/2014; 90C:547-567. DOI:10.1016/j.ejmech.2014.12.005 · 3.43 Impact Factor

Full-text (2 Sources)

Available from
May 30, 2014