A role for Drosophila Drac1 in neurite outgrowth and synaptogenesis in the giant fiber system.

Department of Biology, Morrill Science Center, University of Massachusetts, Amherst, Massachusetts 01003, USA.
Molecular and Cellular Neuroscience (Impact Factor: 3.84). 01/2001; 16(6):754-65. DOI: 10.1006/mcne.2000.0903
Source: PubMed

ABSTRACT Recent studies have shown the small GTPases, Rac1, Rho, and CDC42, to have a role in axon guidance. To assess their participation in synapse assembly and function we have expressed various forms of Drac1 in the giant fiber system of Drosophila. Overexpression of wild-type Drac1 in the giant fiber (GF) lead to a disruption in axonal morphology; axons often terminate prematurely in a large swelling in the target area but lack the normal lateral bend where the synapse with the jump motor neuron would normally be found. Electrophysiological assays revealed longer latencies and lowering following frequencies indicating defects in the synapse between the GF and the tergotrochanteral motor neuron (TTMn). Thickened abnormal GF dendrites were also observed in the brain. Overexpression of the dominant-negative form of Drac1, (N17), resulted in axons that produced extra branches in the second thoracic neuromere (T2); however, the synaptic connection to the TTMn was present and functioned normally. Conversely, expression of the constitutively active form, Drac1(V12), resulted in a complete lack of neurite outgrowth and this was also seen with overexpression of Dcdc42(V12). In the absence of a GF, these flies showed no response in the jump (TTM) or flight (DLM) muscles upon brain stimulation. Taken together these results show that the balance of actin polymerization and depolymerization determines local process outgrowth and thereby synapse structure and function.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Brains undergo significant remodeling after traumatic brain injury (TBI). The Rho GTPase pathways control brain remodeling during development and under pathological conditions. However, how the Rho GTPase pathways are regulated in the brain after TBI remains largely unknown. This study utilized the rat fluid percussion injury model to investigate changes in the Rho GTPase pathways after TBI. The results showed that TBI leads to activation and translocation of RhoA and Rac1 proteins from cytosolic fraction to the membrane fraction after injury. Consistently, the Rho guanine nucleotide exchange factors GEF-H1 and Cool-2/αPix are significantly activated by dephosphorylation and accumulation in the cytosolic fractions during the post-TBI phase. Because the Rho GTPase pathways are key regulators of brain remodeling, these results depict regulatory mechanisms of the Rho GTPase pathways after TBI, and pave the way for the study of therapeutic agents targeting the Rho GTPase pathways for functional recovery after TBI.
    Journal of neurotrauma 04/2013; · 4.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The small GTPase RhoG plays a central role in actin remodelling during diverse biological processes such as neurite outgrowth, cell migration, phagocytosis of apoptotic cells, and the invasion of pathogenic bacteria. Although it is known that RhoG stimulates neurite outgrowth in the rat pheochromocytoma PC12 cell line, neither the physiological function nor the regulation of this GTPase in neuronal differentiation is clear. Here, we identify RhoG as an inhibitor of neuronal process complexity, which is regulated by the microRNA miR-124. We find that RhoG inhibits dendritic branching in hippocampal neurons in vitro and in vivo. RhoG also inhibits axonal branching, acting via an ELMO/Dock180/Rac1 signalling pathway. However, RhoG inhibits dendritic branching dependent on the small GTPase Cdc42. Finally, we show that the expression of RhoG in neurons is suppressed by the CNS-specific microRNA miR-124 and connect the regulation of RhoG expression by miR-124 to the stimulation of neuronal process complexity. Thus, RhoG emerges as a cellular conductor of Rac1 and Cdc42 activity, in turn regulated by miR-124 to control axonal and dendritic branching.
    The EMBO Journal 05/2012; 31(13):2908-21. · 9.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Invasive cell growth and migration is usually considered a specifically metazoan phenomenon. However, common features and mechanisms of cytoskeletal rearrangements, membrane trafficking and signalling processes contribute to cellular invasiveness in organisms as diverse as metazoans and plants -- two eukaryotic realms genealogically connected only through the last common eukaryotic ancestor (LECA). By comparing current understanding of cell invasiveness in model cell types of both metazoan and plant origin (invadopodia of transformed metazoan cells, neurites, pollen tubes and root hairs), we document that invasive cell behavior in both lineages depends on similar mechanisms. While some superficially analogous processes may have arisen independently by convergent evolution (e.g. secretion of substrate- or tissue-macerating enzymes by both animal and plant cells), at the heart of cell invasion is an evolutionarily conserved machinery of cellular polarization and oriented cell mobilization, involving the actin cytoskeleton and the secretory pathway. Its central components - small GTPases (in particular RHO, but also ARF and Rab), their specialized effectors, actin and associated proteins, the exocyst complex essential for polarized secretion, or components of the phospholipid- and redox- based signalling circuits (inositol-phospholipid kinases/PIP2, NADPH oxidases) are aparently homologous among plants and metazoans, indicating that they were present already in LECA.Reviewer: This article was reviewed by Arcady Mushegian, Valerian Dolja and Purificacion Lopez-Garcia.
    Biology Direct 04/2013; 8(1):8. · 2.72 Impact Factor