Hereditary tyrosinaemia type I: from basics to progress in treatment.

Department of Dermatology, University of Helsinki, Finland.
Annals of Medicine (Impact Factor: 4.73). 12/2000; 32(8):530-8. DOI: 10.3109/07853890008998832
Source: PubMed

ABSTRACT Hereditary tyrosinaemia type I is the most common of the diseases caused by defects in tyrosine metabolism. The underlying genetic defect is a mutation in the gene for fumarylacetate hydrolase (FAH), and more than 30 different mutations in this gene have been identified. The main clinical consequences of this defect include hepatic involvement, with a high risk for liver cancer, and renal tubular dysfunction. Restriction of phenylalanine and tyrosine from the diet along with supportive measures can ameliorate the symptoms, but cure has so far been possible only with liver transplantation. Recent discovery of a pharmacological treatment with a peroral inhibitor of tyrosine catabolic pathway, 2-(2-nitro-4-trifluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC), offers a new promising tool for the treatment of patients with hereditary tyrosinaemia type I. Mouse models of FAH deficiency have been successfully used in experimental gene therapy, and these studies indicate that future management of tyrosinaemia with a gene therapeutic approach may become feasible.

  • Angiología 01/2011; 63(1):31-33.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The management of children with end-stage chronic liver disease and acute liver failure mandates a multidisciplinary approach and intense monitoring. In recent years, considerable progress has been made in developing specific and supportive medical measures, but studies and publications have mainly concerned adult patients. Therapeutic approaches to complications of end-stage chronic liver disease and acute liver failure (e.g. refractory ascites, hepatorenal syndrome, encephalopathy, and cerebral edema) that may be applied to children are reviewed in this article. Mild-to-moderate ascites should be managed by modest salt restriction and oral diuretic therapy in the first instance. Large volume paracentesis associated with colloid volume expansion and diuretic therapy may be effective for acute relief. Treatment of hepatorenal syndrome type 1 with vasopressin analogs (terlipressin) is recommended prior to liver transplantation in order to improve renal function. Prevention and treatment of chronic hepatic encephalopathy are directed primarily at controlling the events that may precipitate hepatic encephalopathy and at reducing ammonia generation and increasing its detoxification or removal. In addition to reduction of gut ammonia production using non-absorbable disaccharides such as lactulose and/or antibacterials such as neomycin, sodium benzoate may be used on a long-term basis to prevent, stabilize, or improve hepatic encephalopathy. The management of hepatic encephalopathy in acute liver failure is considerably more unsatisfactory; treatment is aimed at preventing brain edema and intracranial hypertension. Extracorporeal liver support devices are now used commonly in critically ill children with acute renal failure, advanced hepatic encephalopathy, cerebral edema, intracranial hypertension, and severe coagulopathy. Continuous renal replacement therapy could potentially help support patients until liver transplantation is performed or liver regeneration occurs. The Molecular Adsorbent Recirculating System (MARS® or albumin dialysis) is the liver support system most frequently used worldwide in adults and appears to offer distinct advantages over hepatocyte-based systems. There are no specific medical therapies or devices that can correct all of the functions of the liver. Apart from a few metabolic diseases presenting with severe liver dysfunction for which specific medical therapies may preclude the need for liver transplantation, liver transplantation still remains the only definitive therapy in most instances of end-stage chronic liver disease and acute liver failure. Future research should focus on gaining a better understanding of the mechanisms responsible for liver cell death and liver regeneration, as well as developments in hepatocyte transplantation and liver-directed gene therapy.
    Paediatric Drugs 01/2006; 8(1):1-13. · 1.72 Impact Factor
  • Source
    Dataset: tyrosinemia