Article

Anaerobic conversion of lactic acid to acetic acid and 1, 2-propanediol by Lactobacillus buchneri.

ID TNO Animal Nutrition, Lelystad, The Netherlands.
Applied and Environmental Microbiology (Impact Factor: 3.95). 02/2001; 67(1):125-32. DOI: 10.1128/AEM.67.1.125-132.2001
Source: PubMed

ABSTRACT The degradation of lactic acid under anoxic conditions was studied in several strains of Lactobacillus buchneri and in close relatives such as Lactobacillus parabuchneri, Lactobacillus kefir, and Lactobacillus hilgardii. Of these lactobacilli, L. buchneri and L. parabuchneri were able to degrade lactic acid under anoxic conditions, without requiring an external electron acceptor. Each mole of lactic acid was converted into approximately 0.5 mol of acetic acid, 0.5 mol of 1,2-propanediol, and traces of ethanol. Based on stoichiometry studies and the high levels of NAD-linked 1, 2-propanediol-dependent oxidoreductase (530 to 790 nmol min(-1) mg of protein(-1)), a novel pathway for anaerobic lactic acid degradation is proposed. The anaerobic degradation of lactic acid by L. buchneri does not support cell growth and is pH dependent. Acidic conditions are needed to induce the lactic-acid-degrading capacity of the cells and to maintain the lactic-acid-degrading activity. At a pH above 5.8 hardly any lactic acid degradation was observed. The exact function of anaerobic lactic acid degradation by L. buchneri is not certain, but some results indicate that it plays a role in maintaining cell viability.

1 Bookmark
 · 
132 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The changes in yields and nutritive composition of whole crop wheat (Triticum aestivum L.) during maturation and effects of maturity stage and lactic acid bacteria (LAB) inoculants on the fermentation quality and aerobic stability were investigated under laboratory conditions. Whole crop wheat harvested at three maturation stages: flowering stage, milk stage and dough stage. Two strains of LAB (Lactobacillus plantarum: LAB1, Lactobacillus parafarraqinis: LAB2) were inoculated for wheat ensiling at 1.0×10(5) colony forming units per gram of fresh forage. The results indicated that wheat had higher dry matter yields at the milk and dough stages. The highest water-soluble carbohydrates content, crude protein yields and relative feed value of wheat were obtained at the milk stage, while contents of crude fiber, neutral detergent fiber and acid detergent fiber were the lowest, compared to the flowering and dough stages. Lactic acid contents of wheat silage significantly decreased with maturity. Inoculating homofermentative LAB1 markedly reduced pH values and ammonia-nitrogen (NH3-N) content (p<0.05) of silages at three maturity stages compared with their corresponding controls. Inoculating heterofermentative LAB2 did not significantly influence pH values, whereas it notably lowered lactic acid and NH3-N content (p<0.05) and effectively improved the aerobic stability of silages. In conclusion, considering both yields and nutritive value, whole crop wheat as forage should be harvested at the milk stage. Inoculating LAB1 improved the fermentation quality, while inoculating LAB2 enhanced the aerobic stability of wheat silages at different maturity stages.
    Asian Australasian Journal of Animal Sciences 10/2012; 25(10):1374-80. · 0.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Three microorganisms and one chemical preservative were tested for their effects on the fermentation and aerobic stability of whole-crop wheat, sorghum and maize silages. Wheat at the early dough stage, sorghum at the late milk stage and maize at the one-third milk line stage were harvested and ensiled in 1.5-l anaerobic jars untreated or after the following treatments: control (no additives); Lactobacillus plantarum (LP) at 1.0??06 colony-forming units (CFU)/g of fresh forage; L. buchneri (LB) at 1.0??06 CFU/g; Propionibacterium acidipropionici (PA) at 1.0??06 CFU/g; and a formic acid-based preservative (FAP) at 3 ml/kg of fresh forage weight. Three jars per treatment were sampled on d 90 after ensiling, for chemical and microbiological analysis. At the end of the ensiling period, 90 d, the silages were subjected to an aerobic stability test lasting 5 d. In this test, CO2 produced during aerobic exposure was measured along with chemical and microbiological parameters which serve as spoilage indicators. The silages inoculated with LP had higher concentration of lactic acid compared with the controls and the other treated silages (p
    Asian Australasian Journal of Animal Sciences 03/2007; 20(3). · 0.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study examined the effects of bacterial inoculants on chemical composition and fermentation indices of barley silage. Barley forage (Youngyang) was harvested at 24% dry matter (DM) and wilted to 47.9% DM. The wilted barley forage was chopped to 3-5 cm length and applied with no inoculant (CON), L. plantarum (1×10(10) cfu/g, LP) or Effective Microorganisms (0.5×10(9) cfu/g, EM). Then the forages were ensiled in four replications for each treatment in 20 L mini silos and stored for 100 days. The contents of crude protein and ether extract were higher in CON silage ensiled for 100-d, while the contents of DM and crude ash were higher in EM silage (p<0.05). The contents of ADF, NDF and hemicellulose as well as the in vitro DM digestibility were not affected by microbial inoculation (p>0.05). The pH, ammonia-N concentration and lactate to acetate ratio were higher (p<0.05) in CON silage, while lactate concentrations were higher (p<0.05) in CON and LP silage. Acetate concentration and lactic acid bacteria was increased (p<0.05) by both inoculants (LP and EM), but propionate concentration and yeast was increased (p<0.05) by EM and LP, respectively. These results indicated that the fermentation quality of barley silage was improved by the application of bacterial inoculants.
    Asian Australasian Journal of Animal Sciences 04/2014; 27(4):511-7. · 0.64 Impact Factor

Full-text (2 Sources)

Download
66 Downloads
Available from
Jun 10, 2014