Article

Taxanes: the genetic toxicity of paclitaxel and docetaxel in somatic cells of Drosophila melanogaster.

Departamento de Ciências Fisiológicas, Universidade Federal de Goiás, CP 131, 74001-970 Goiânia, GO, Brasil.
Mutagenesis (Impact Factor: 3.5). 02/2001; 16(1):79-84. DOI: 10.1093/mutage/16.1.79
Source: PubMed

ABSTRACT In this study, the taxanes, paclitaxel and docetaxel were investigated for genotoxicity in the wing spot test of Drosophila melanogaster. These relatively new drugs are used in cancer therapy and show great promise in the treatment of a variety of cancers. Their major cellular target is the alpha,beta-tubulin dimer but, unlike other spindle poisons, they stabilize microtubules by a shift towards assembly, producing nonfunctional microtubule bundles. The Drosophila wing Somatic Mutation and Recombination Test (SMART) provides a rapid means to evaluate agents able to induce gene mutations and chromosome aberrations, as well as rearrangements related to mitotic recombination. We applied the standard version of SMART (with normal bioactivation) and a variant version with increased cytochrome P450-dependent biotransformation capacity. In the standard assay, docetaxel was found to be aneuploidogenic; this was effectively abolished by a high cytochrome P450-dependent detoxification capacity. This suggests, as previously reported, the involvement of this family of enzymes in the detoxification of docetaxel rather than in its activation. In contrast, paclitaxel was clearly non-genotoxic at the same (millimolar) concentrations as used for docetaxel in both crosses. The weak responsiveness of SMART assays to aneugenic compounds, the weaker ligand and assembly action of paclitaxel and the more rapid reversibility of the microtubules formed with this compound, may have caused the negative response observed in the present study.

0 Bookmarks
 · 
53 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The somatic mutation and recombination test in Drosophila melanogaster was applied to analyze the mutagenic and recombinagenic activity of the chemotherapeutic drugs cisplatin, paclitaxel, and 5-fluorouracil, comparing the effects observed in combinatory treatments with those observed in single administrations. The results obtained in two different genotypes allowed to quantitatively and qualitatively estimate the contribution of genotoxic effects. The results obtained with the individual drug treatments showed that cisplatin and 5-fluorouracil were genotoxic, being able to increase the frequency of total spots on both genotypes. While cisplatin preferentially induced DNA damage of recombinational origin, all the damages induced by 5-fluorouracil were caused by gene and/or chromosome mutations, and the aneuploidogenic compound paclitaxel was not genotoxic. The combination of these drugs does not exert a synergist genotoxic effect in both genotypes compared to the single-agent administration. Instead, it was observed a modification in the proportion of mutation and recombination to the final genotoxicity observed. The antiproliferative activity of PAC could be responsible for the non-synergic genotoxic effect observed. Based on our results it is possible to suggest that cisplatin/paclitaxel/5-fluorouracil treatment regimen cannot impose a higher risk of the development of genotoxicity-associated secondary tumors in comparison to their individual applications.
    Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association 11/2010; 48(11):3120-4. · 2.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The genotoxicity of a molecule refers to its ability to interact with DNA in a way that inhibits normal DNA replication and transcription possibly leading to mutagenesis or carcinogenesis. Assessing the genotoxicity of a compound is critical in the development of pharmaceuticals and other products designed for human consumption or use. Typically genotoxicity is established using expensive and time consuming methods using animals or bacteria like the Ames test, mouse lymphoma assay, or mouse and rat carcinogenicity tests. We have developed a magnetic nanoparticle-based assay that uses conjugated double-stranded DNA to serve as a substrate for interaction with genotoxic molecules. After application of a magnetic field, the genotoxic molecules are extracted with the DNA-conjugated magnetic nanoparticles. The genotoxic molecules can then be released and detected. To evaluate the potential of this assay, we have screened several genotoxic and non-genotoxic compounds and have demonstrated the ability to extract a genotoxic compound in the presence of a non-genotoxic molecule. The assay demonstrates suitable analytical performance and the ability to differentiate between genotoxic and non-genotoxic molecules providing a rapid and inexpensive alternative to more traditional methods of evaluating genotoxicity.
    Analytical and Bioanalytical Chemistry 08/2012; 404(8):2233-9. · 3.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Curcumin is considered to be a potential component for drug-eluting stents due to its anti-inflammatory properties. In this study we compared the mutagenicity and blood compatibility of curcumin to first generation drug eluting stent components: paclitaxel and sirolimus. The Ames test was used to assess mutagenicity. Blood compatibility was tested by measuring platelet activation and fibrinogen adsorption on poly (DL-lactide-co-glycolide, PLGA) films. We discovered that there was no significant increase in the number of revertants/plate following treatment with curcumin (up to 0.5 mg/plate) or sirolimus (up to 0.5 μg/plate). However, a significant induction in the frequency of bacterial his(+) revertant colonies by paclitaxel at concentrations of 0.02, 0.05, 0.1, 0.2 and 0.5 μg/plate was observed. We also discovered a significant reduction in platelet activation by PLGA films containing 30% and 50% by weight curcumin. A similar reduction in platelet activation was also observed for PLGA films containing 1% by weight paclitaxel. In addition, we observed an increase of fibrinogen adsorption to PLGA-films containing curcumin. This would compromise the potential use of curcumin as a component of drug-eluting stents. Moreover, our data challenges the current view that paclitaxel does not significantly induce mutagenesis.
    Toxicology in Vitro 10/2012; · 2.65 Impact Factor