FGF-2-Responsive Neural Stem Cell Proliferation Requires CCg, a Novel Autocrine/Paracrine Cofactor

Laboratory of Genetics, The Salk Institute, La Jolla, California 92037, USA.
Neuron (Impact Factor: 15.98). 12/2000; 28(2):385-97. DOI: 10.1016/S0896-6273(00)00119-7
Source: PubMed

ABSTRACT We have purified and characterized a factor, from the conditioned medium of neural stem cell cultures, which is required for fibroblast growth factor 2's (FGF-2) mitogenic activity on neural stem cells. This autocrine/paracrine cofactor is a glycosylated form of cystatin C (CCg), whose N-glycosylation is required for its activity. We further demonstrated that, both in vitro and in vivo, neural stem cells undergoing cell division are immunopositive for cystatin C. Finally, we showed in vivo functional activity of CCg by demonstrating that the combined delivery of FGF-2 and CCg to the adult dentate gyrus stimulated neurogenesis. We propose that the process of neurogenesis is controlled by the cooperation between trophic factors and autocrine/paracrine cofactors, of which CCg is a prototype.

  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We previously demonstrated that allopregnanolone (APα) increased proliferation of neural progenitor cells and reversed neurogenic and cognitive deficits prior to Alzheimer's disease (AD) pathology (Wang, J.M., Johnston, P.B., Ball, B.G., Brinton, R.D., 2005. The neurosteroid allopregnanolone promotes proliferation of rodent and human neural progenitor cells and regulates cell-cycle gene and protein expression. J. Neurosci. 25, 4706-4718; Wang, J.M., Singh, C., Liu, L., Irwin, R.W., Chen, S., Chung, E.J., Thompson, R.F., Brinton, R.D., 2010. Allopregnanolone reverses neurogenic and cognitive deficits in mouse model of Alzheimer's disease. Proc. Natl. Acad. Sci. U. S. A. 107, 6498-6503). Herein, we determined efficacy of APα to restore neural progenitor cell survival and associative learning and memory subsequent to AD pathology in male 3xTgAD mice and their nontransgenic (nonTg) counterparts. APα significantly increased survival of bromodeoxyuridine positive (BrdU+) cells and hippocampal-dependent associative learning and memory in 3xTgAD mice in the presence of intraneuronal amyloid beta (Aβ) whereas APα was ineffective subsequent to development of extraneuronal Aβ plaques. Restoration of hippocampal-dependent associative learning was maximal by the first day and sustained throughout behavioral training. Learning and memory function in APα-treated 3xTgAD mice was 100% greater than vehicle-treated and comparable to maximal normal nonTg performance. In aged 15-month-old nonTg mice, APα significantly increased survival of bromodeoxyuridine-positive cells and hippocampal-dependent associative learning and memory. Results provide preclinical evidence that APα promoted survival of newly generated cells and restored cognitive performance in the preplaque phase of AD pathology and in late-stage normal aging.
    Neurobiology of aging 07/2011; 33(8):1493-506. DOI:10.1016/j.neurobiolaging.2011.06.008 · 4.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human immunodeficiency virus (HIV)-1 neuropathology results from collective effects of viral proteins and inflammatory mediators on several cell types. Significant damage is mediated indirectly through inflammatory conditions promulgated by glial cells, including microglia that are productively infected by HIV-1, and astroglia. Neural and glial progenitors exist in both developing and adult brains. To determine whether progenitors are targets of HIV-1, a multi-plex assay was performed to assess chemokine/cytokine expression after treatment with viral proteins transactivator of transcription (Tat) or glycoprotein 120 (gp120). In the initial screen, ten analytes were basally released by murine striatal progenitors. The beta-chemokines CCL5/regulated upon activation, normal T cell expressed and secreted, CCL3/macrophage inflammatory protein-1alpha, and CCL4/macrophage inflammatory protein-1beta were increased by 12-h exposure to HIV-1 Tat. Secreted factors from Tat-treated progenitors were chemoattractive towards microglia, an effect blocked by 2D7 anti-CCR5 antibody pre-treatment. Tat and opiates have interactive effects on astroglial chemokine secretion, but this interaction did not occur in progenitors. gp120 did not affect chemokine/cytokine release, although both CCR5 and CXCR4, which serve as gp120 co-receptors, were detected in progenitors. We postulate that chemokine production by progenitors may be a normal, adaptive process that encourages immune inspection of newly generated cells. Pathogens such as HIV might usurp this function to create a maladaptive state, especially during development or regeneration, when progenitors are numerous.
    Journal of Neurochemistry 07/2010; 114(1):97-109. DOI:10.1111/j.1471-4159.2010.06744.x · 4.24 Impact Factor