Tyrosine hydroxylase in vasopressinergic axons of the pituitary posterior lobe of rats under salt-loading as a manifestation of neurochemical plasticity.

Laboratory of Hormonal Regulations, Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov str., Moscow 117808, Russia.
Neural plasticity 02/2000; 7(3):179-91. DOI: 10.1155/NP.2000.179
Source: PubMed

ABSTRACT In this study, we attempted to test whether tyrosine hydroxylase (TH), the first rate-limiting enzyme of catecholamine synthesis, is confined to the perikarya of activated magnocellular vasopressinergic (VPergic) neurons or is also present in their distal axons in the pituitary posterior lobe (PL). In addition, we evaluated the possible correlation between TH and VP turnover in the axons of rats drinking 2% NaCl for 1, 2, and 3 weeks. To this aim, we examined the large swellings of VPergic axons, the so-called Herring bodies, using the double-immunofluorescent technique and the avidinbiotin technique, combined with image analysis. Here we have demonstrated for the first time a colocalization of TH and VP in Herring bodies, which is a strong argument in favor of TH transport from the perikarya of VPergic neurons via axons toward their terminals. TH-immunoreactive (IR) and VP-IR materials were distributed in Herring bodies with seeming zonality. The number of VP-IR Herring bodies decreased by a factor of four over the first week of osmotic stimulation, remaining at almost the same low level until the end of the experiment. Conversely, the content of the VP-IR material within the individual Herring bodies fell gradually during the three weeks of salt-loading. The results suggest that VP depletion from Herring bodies prevails in its transport into these structures during the whole period of osmotic stimulation. In contrast to VP-IR Herring bodies, the number of TH-IR Herring bodies and the content of TH-IR material within the individual Herring bodies increased progressively during the entire experiment. The synchronization of the VP depletion and TH accumulation in Herring bodies during long-term osmotic stimulation raised the question about a possible functional interaction between both substances.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Osmotic stimulation (OS) of vasopressin (VP) neurons of the supraoptic nucleus (SON) promotes VP secretion and tyrosine hydroxylase (TH) expression in adult mammals. VP secretion is under a noradrenaline control, whereas the regulation of TH expression remains uncertain. This study was aimed to determine at what period of ontogenesis: (1) VP neurons begin to react to OS by modifying simultaneously VP and TH gene expression and synthesis, (2) the noradrenergic control of VP neurons is established. Rats on the 21st embryonic day (E), third postnatal day (P), P13 were salt loaded or salt loaded and treated with an antagonist (prazosin) or agonist (phenylephrine) of α1-adrenoreceptors. According to our immunocytochemical and in situ hybridization data, OS resulted in an increased amount of VP mRNA in each age group and of VP on E21 and P3. TH gene and synthesis was initially expressed under OS on P3. The number of TH-expressing neurons diminished by threefold in salt loaded rats from P3 to P13. OS combined with prazosin administration resulted in an increased level of VP mRNA on P3 and P13, but not on E21 suggesting the onset of the noradrenaline inhibitory control after birth. OS together with prazosin treatment stimulated TH expression on P3 and P13, whereas phenylephrine provided an opposite effect. Thus, VP neurons begin to react to OS by an increased VP synthesis at the end of fetal life and by the onset of TH expression shortly after birth; the expression of both substances appears to be under the inhibitory control of noradrenaline.
    Brain Structure and Function 01/2011; 215(3-4):195-207. · 7.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: An attempt is made to find out, at what stage of ontogenesis an expression of gene and synthesis of tyrosine hydroxylase (TH) is started, and whether noradrenergic afferents participate in regulation of these processes. The study is carried out on rats at the 21st embryonal day (E21), P3 and P13 with use of quantitative and semi-quantitative immunocytochemistry and hybridization in situ. Animals of all ages were subjected to a salt load, in some cases on the background of introduction of and α1-adrenoreceptor inhibitor, prazozine. According to the obtained data, the TH expression in SON neurons in response to the salt load begins at P3. The number of VP-ergic neurons expressing TH during the salt load is 3-fold reduced from P3 to P13. Taking into account that the innervation of VP-ergic SON neurons is realized for this period of development, we formulated a hypothesis that the TH expression is inhibited by noradrenergic afferents. According to the obtained data, TH is not expressed in osmotically stimulated VP-ergic neurons on the background of prazozine injection at E21; however, this combined effect results in increased TH expression at P3 and P13. At P13, i.e., in animals with a more developed afferent innervation, the amount of TH-immunoreactive neurons is three times lower, than at P3. Thus, in ontogenesis of rats, VP-ergic neurons begin to respond to osmotic stimulation by inclusion of the TH gene expression and its synthesis at the neonatal period, the both processes being under the inhibitory control of noradrenergic afferents mediated through α1-adrenoreceptors.
    Journal of Evolutionary Biochemistry and Physiology 01/2006; 42(2):174-181. · 0.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: An analysis is presented of the literary data on differentiation of magnocellular vasopressinergic (VPergic) neurons and their regulation by signal molecules in ontogenesis. The VPergic neurons are formed in ontogenesis from cells-precursors of the III ventricle wall; after that, they migrate first into the supraoptic nucleus and then into the paraventricular and accessory nuclei of hypothalamus. At the migration period or at once after migration of the neurons a gene expression and synthesis of preprovasopressin (prepro-VP) occurs. The enzymatic processing of prepro-VP with a formation of functionally active VP begins somewhat later than synthesis of preprohormone. Axons of the VPergic neurons reach the posterior lobe of pituitary before or at once after migration of the neurons into the magnocellular nuclei. Much later, at the perinatal period, the mechanisms of VP release from axons into the general circulation are formed. At the end of prenatal period, the neurons start responding to functional stimulation by an increase of synthesis of the prepro-VP mRNA and peptide itself, as well as by expression of the tyrosine hydroxylase after birth. Differentiation of the VPergic neurons is affected by a short-term or long-term (imprinting) action of catecholamines, neuropeptides, and several hormones of endocrine glands.
    Journal of Evolutionary Biochemistry and Physiology 01/2002; 38(5):575-585. · 0.24 Impact Factor


Available from