alphavbeta5 integrin recruits the CrkII-Dock180-rac1 complex for phagocytosis of apoptotic cells.

Laboratory of Neuro-Oncology, Rockefeller University, 1230 York Avenue, Box 226 New York 10021, USA.
Nature Cell Biology (Impact Factor: 20.06). 01/2001; 2(12):899-905. DOI: 10.1038/35046549
Source: PubMed

ABSTRACT Integrin receptors are important for the phagocytosis of apoptotic cells. However, little is known about their function in mediating internalization, as previous studies used blocking antibodies for the inhibition of binding. Here we show that the alphavbeta5 receptor mediates both binding and internalization of apoptotic cells. Internalization is dependent upon signalling through the beta5 cytoplasmic tail, and engagement of the alphavbeta5 heterodimer results in recruitment of the p130cas-CrkII-Dock180 molecular complex, which in turn triggers Rac1 activation and phagosome formation. In addition to defining integrin-receptor signalling as critical for the internalization of apoptotic material, our results also constitute the first evidence in human cells that the CED-2-CED-5-CED-10 complex defined in Caenorhabditis elegans is functionally analagous to the CrkII-Dock180-Rac1 molecular complex in mammalian cells. By linking the alphavbeta 5 receptor to this molecular switch, we reveal an evolutionarily conserved signalling pathway that is responsible for the recognition and internalization of apoptotic cells by both professional and non-professional phagocytes.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Billions of cells undergo apoptosis every day in healthy individuals. A prompt removal of dying cells prevents the release of pro-inflammatory intracellular content and progress to secondary necrosis. Thus, inappropriate clearance of apoptotic cells provokes autoimmunity and has been associated with many chronic inflammatory diseases. Recent studies have suggested that extracellular adenosine 5'-triphosphate and related nucleotides play an important role in the apoptotic clearance process. Here, we review the current understanding of nucleotides and purinergic receptors in apoptotic cell clearance and the potential therapeutic targets of purinergic receptor subtypes in inflammatory conditions.
    Frontiers in Immunology 12/2014; 5:656. DOI:10.3389/fimmu.2014.00656
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Eukaryotic EnguLfment and cell MOtility (ELMO) proteins form an evolutionary conserved family of regulators involved in small GTPase dependent actin remodeling processes that regulates the guanine exchange factor activity of some of the DOwnstream of CrK (DOCK) family members. Gathered data strongly suggest that DOCK activation by ELMO and the subsequent signaling result from a subtle balance in the binding of partners to ELMO. Among its putative upward modulators, the Hematopoietic cell kinase (Hck), a member of the Src kinase superfamily, has been identified as a binding partner and a specific tyrosine kinase for ELMO1. Indeed, Hck is implicated in distinct molecular signaling pathways governing phagocytosis, cell adhesion, and migration of hematopoietic cells. Although ELMO1 has been shown to interact with the regulatory Src Homology 3 (SH3) domain of Hck, no direct evidence indicating the mode of interaction between Hck and ELMO1 have been provided in the literature. In the present study, we report convergent pieces of evidence that demonstrate the specific interaction between the SH3 domain of Hck and the polyproline motif of ELMO1. Our results also suggest that the tyrosine-phosphorylation state of ELMO1 tail might act as a putative modulator of Hck kinase activity towards ELMO1 that in turn participates in DOCK180 activation and further triggers subsequent signaling towards actin remodeling.
    02/2015; 406. DOI:10.1016/j.fob.2015.01.009
  • [Show abstract] [Hide abstract]
    ABSTRACT: Efficient phagocytic clearance of apoptotic cells (efferocytosis) is essential to prevent the development of chronic inflammation and autoimmunity. Glucocorticoids are widely used in the therapy of chronic inflammatory diseases, and increasing evidence suggests that they act partly via enhancing efferocytosis by macrophages. Glucocorticoids were previously shown to promote both protein S- and MFG-E8-dependent efferocytosis. Since previous studies in our laboratory have demonstrated that glucocorticoids induce the expression of retinaldehyde dehydrogenases in macrophages, in the present experiments the possible involvement of retinoids in the glucocorticoid-induced efferocytosis was studied in mouse bone marrow derived macrophages. Here we show that glucocorticoids promote not only short-term, but also long-term clearance of apoptotic cells. Glucocorticoids seem to directly induce the expression of the phagocytosis-related genes MERTK, C1q, UCP2, and the transcription factor C/EBPβ. C/EBPβ contributes to the further induction of the phagocytosis-related genes, and is required for the induction of lipid sensing receptors LXRs, PPARδ, RARα, RXRα and RALDH1, the latter one in an LXR- and RARα-dependent manner. Glucocorticoid-induced enhancement in long-term efferocytosis was dependent on the induction of lipid sensing receptors known to be triggered by the lipid content of the engulfed cells to enhance phagocytic capacity. Retinoids did not affect the glucocorticoid-induced short term phagocytosis of apoptotic cells, but were required for the glucocorticoid-induced enhancement of efferocytosis during prolonged clearance of apoptotic cells by promoting efficient LXR and PPARδ upregulation. Our data indicate that retinoids could be considered as potential promoters of the efficacy of glucocorticoid treatment in inflammatory diseases.
    Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 12/2014; DOI:10.1016/j.bbamcr.2014.12.014 · 5.30 Impact Factor