Article

The nutritional management of urea cycle disorders.

Institute of Child Health and Great Ormond Street Hospital for Children, London, United Kingdom.
Journal of Pediatrics (Impact Factor: 4.04). 02/2001; 138(1 Suppl):S40-4;discussion S44-5. DOI: 10.1067/mpd.2001.111835
Source: PubMed

ABSTRACT Diet is one of the mainstays of the treatment of patients with urea cycle disorders. The protein intake should be adjusted to take account of the inborn error and its severity and the patient's age, growth rate, and individual preferences. Currently, the widely used standards for protein intake are probably more generous than necessary, particularly for those with the more severe variants. Most patients, except those with arginase deficiency, will need supplements of arginine, but the value of other supplements including citrate and carnitine is unclear. Any patient on a low-protein diet should be monitored clinically and with appropriate laboratory tests. All should have an emergency (crisis) regimen to prevent decompensation during periods of metabolic stress.

0 Bookmarks
 · 
71 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dietary restrictions required to manage individuals with Inborn Errors of Metabolism (IEM) are essential for metabolic control, however may result in an increased risk to both short and long- term nutritional status. Dietary factors most likely to influence nutritional status include energy intake, protein quality and quantity, micronutrient intake and the frequency and extent to which the diet must be altered during periods of increased physical or metabolic stress. Patients on the most restrictive diets, including those with intakes consisting of low levels of natural protein or those with recurrent illness or frequent metabolic decompensation carry the most nutritional risk. Due to the difficulties in determining condition specific requirements, dietary intake recommendations and nutritional monitoring tools used in patients with IEM are the same as, or extrapolated from, those used in healthy populations. As a consequence, evidence is lacking for the safest dietary prescriptions required to manage these patients long term, as tolerance to dietary therapy is generally described in terms of metabolic stability rather than long term nutritional and health outcomes. As the most frequent therapeutic dietary manipulation in IEM is alteration in dietary protein, and as protein status is critically dependent on adequate energy provision, the use of a Protein to Energy ratio (P:E ratio) as an additional tool will better define the relationship between these critical components. This could accurately define dietary quality and ensure that not only an adequate, but also a safe and balanced intake is provided.
    Molecular Genetics and Metabolism 01/2014; · 2.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dietary recommendations for patients with urea cycle disorders (UCDs) are designed to prevent metabolic decompensation (primarily hyperammonaemia), and to enable normal growth. They are based on the 'recommended daily intake' guidelines, on theoretical considerations and on local experience. A retrospective dietary review of 28 patients with UCDs in good metabolic control, at different ages, indicates that most patients can tolerate a natural protein intake that is compatible with metabolic stability and good growth. However, protein aversion presents a problem in many patients, leading to poor compliance with the prescribed daily protein intake. These patients are at risk of chronic protein deficiency. Failing to recognise this risk, and further restricting protein intake because of persistent hyperammonaemia may aggravate the deficiency and potentially lead to episodes of metabolic decompensation for which no clear cause is found. These patients may need on-going supplementation with essential amino acids (EAA) to prevent protein malnutrition. Current recommendations for the management of acute metabolic decompensation include cessation of protein intake whilst increasing energy (calorie) intake in the first 24h. We have found that plasma concentrations of all EAA are low at the time of admission to hospital for metabolic decompensation, with correlation between low EAA concentrations, particularly branched-chain amino acids, and hyperammonaemia. Thus, supplementation with EAA should be considered at times of metabolic decompensation. Finally, it would be advantageous to treat patients in metabolic decompensation through enteral supplementation, whenever possible, because of the contribution of the splanchnic (portal-drained viscera) system to protein retention and metabolism.
    Molecular Genetics and Metabolism 05/2014; · 2.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A 3-year-old girl suffering from ornithine carbamoyltransferase (OTC) deficiency was poorly equilibrated under conventional diet and scavenger treatment. Following unsuccessful cryopreserved hepatocyte transplantation, she received two infusions of Adult Derived Human Liver Stem/Progenitor Cells (ADHLSCs) expanded in vitro under GMP settings, the quantity being equivalent to 0.75% of her calculated liver mass. Using FISH immunostaining for the Y chromosome, the initial biopsy did not detect any male nuclei in the recipient liver. Two liver biopsies taken 100 days after ADHLSC transplantation showed 3% and 5% of male donor cells in the recipient liver, thus suggesting repopulation by donor cells. Although limited follow-up did not allow us to draw conclusions on long-term improvement, these results provide a promising proof of concept that this therapy is feasible in an OTC patient.
    JIMD reports. 10/2013;

Full-text

Download
1 Download
Available from