Article

Involvement of deregulated epiregulin expression in tumorigenesis in vivo through activated Ki-Ras signaling pathway in human colon cancer cells.

Department of Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
Cancer Research (Impact Factor: 9.28). 01/2001; 60(24):6886-9.
Source: PubMed

ABSTRACT To identify the genes located downstream of the activated Ki-Ras signaling pathways in human colon cancer cells, a PCR-based cDNA subtraction library was constructed between HCT116 cells and HCT116-derived activated Ki-ras-disrupted cells (HKe3). One of the genes in HCT116 that was evidently up-regulated was epiregulin, a member of the epidermal growth factor family that is expressed in many kinds of human cancer cells. HKe3-stable transfectants expressing activated Ki-Ras regained over-expression of epiregulin. To further elucidate the biochemical structure and significance of epiregulin expression in tumorigenesis, HKe3-stable transfectants expressing epiregulin (e3-pSE cells) were established. Epiregulin existed as highly glycosylated membrane-bound forms, and TPA rapidly induced ectodomain shedding of epiregulin. Furthermore, the conditioned medium of e3-pSE cells showed more DNA synthesis for 32D cells expressing epidermal growth factor receptor (DER) cells than that of HKe3. Although anchorage-independent growth in soft agar was not observed for e3-pSE cells, tumorigenicity in nude mice was observed evidently, and their growth rate was correlated with each amount of exogenous epiregulin expression. These results suggested that activated Ki-Ras will be one of the factors contributing to the overexpression of epiregulin in human colon cancer cells, and that epiregulin will play a critical role in human tumorigenesis in vivo.

0 Bookmarks
 · 
55 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: 3-Methyl-1,6,8-trihydroxyanthraquinone (emodin) is an active component from the rhizome of Rheum palmatum, a widely used traditional Chinese herb. In this study, we found that emodin significantly inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced in vitro invasion of human cancer cells including HSC5 and MDA-MB-231 cells. Matrix metalloproteinases (MMPs) are known to be associated with cancer invasion. Zymographic analysis showed that emodin suppressed TPA-induced MMP-9 activity in a concentration-dependent manner. We further demonstrated that emodin reduced the transcriptional activity of activator protein-1 (AP-1) and nuclear factor kappaB (NF-κB), two important nuclear transcription factors involved in MMP-9 expression. Emodin suppressed the phosphorylation of two mitogen-activated protein kinases, extracellular signal-regulated protein kinase and c-Jun N-terminal kinase, but not p38 kinase, leading to reduced c-Jun phosphorylation and AP-1 DNA-binding. Moreover, emodin inhibited TPA-induced degradation of inhibitor of kappaBα, nuclear translocation of p65, and NF-κB DNA-binding activity. Taken together, these results suggest that emodin inhibits the invasiveness of human cancer cells by suppressing MMP-9 expression through inhibiting AP-1 and NF-κB signaling pathways.
    Biochemical Pharmacology 05/2004; DOI:10.1016/S0006-2952(04)00212-6 · 4.65 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A largely unilamellar epithelial layer lines body cavities and organ ducts such as the digestive tract and kidney tubules. This polarized epithelium is composed of biochemically and functionally separate apical and basolateral surfaces. The epidermal growth factor receptor (EGFR) signaling pathway is a critical regulator of epithelial homeostasis and is perturbed in a number of epithelial disorders. It is underappreciated that in vivo EGFR signaling is most often initiated by cell-surface delivery and processing of one of seven transmembrane ligands, resulting in release of the soluble form that binds EGFR. In polarized epithelial cells, EGFR is restricted largely to the basolateral surface, and apical or basolateral ligand delivery therefore has important biological consequences. In vitro approaches have been used to study the biosynthesis, cell-surface delivery, proteolytic processing, and release of soluble EGFR ligands in polarized epithelial cells. We review these results, discuss their relevance to normal physiology, and demonstrate the pathophysiological consequences of aberrant trafficking. These studies have uncovered a rich diversity of apico-basolateral trafficking mechanisms among the EGFR ligands, provided insights into the pathogenesis of an inherited magnesium-wasting disorder of the kidney (isolated renal hypomagnesemia), and identified a new mode of EGFR ligand signaling via exosomes. Expected final online publication date for the Annual Review of Physiology Volume 76 is February 10, 2014. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.
    Annual Review of Physiology 11/2013; DOI:10.1146/annurev-physiol-021113-170406 · 19.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Growth factors are implicated in several processes essential for cancer progression. Specifically, epidermal growth factor (EGF) family members, including epiregulin (EREG), are important prognostic factors in many epithelial cancers, and treatments targeting these molecules have recently become available. Here, we constructed and expressed humanized anti-EREG antibodies by variable domain resurfacing based on the three-dimensional (3D) structure of the Fv fragment. However, the initial humanized antibody (HM0) had significantly decreased antigen-binding affinity. Molecular modeling results suggested that framework region (FR) residues latently important to antigen binding included residue 49 of the light chain variable region (VL). Back mutation of the VL49 residue (tyrosine to histidine) generated the humanized version HM1, which completely restored the binding affinity of its murine counterpart. Importantly, only one mutation in the framework may be necessary to recover the binding capability of a humanized antibody. Our data support that HM1 exerts potent antibody-dependent cellular cytotoxicity (ADCC). Hence, this antibody may have potential for further development as a candidate therapeutic agent and research tool.
    Biochemical and Biophysical Research Communications 11/2013; DOI:10.1016/j.bbrc.2013.11.014 · 2.28 Impact Factor