Pharmacological block of the slow component of the outward delayed rectifier current (I(Ks)) fails to lengthen rabbit ventricular muscle QT(c) and action potential duration.

Department of Internal Medicine, Faculty of Medicine, University of Szeged, Szeged, Hungary.
British Journal of Pharmacology (Impact Factor: 5.07). 01/2001; 132(1):101-10. DOI: 10.1038/sj.bjp.0703777
Source: PubMed

ABSTRACT 1. The effects of I(Ks) block by chromanol 293B and L-735,821 on rabbit QT-interval, action potential duration (APD), and membrane current were compared to those of E-4031, a recognized I(Kr) blocker. Measurements were made in rabbit Langendorff-perfused whole hearts, isolated papillary muscle, and single isolated ventricular myocytes. 2. Neither chromanol 293B (10 microM) nor L-735,821 (100 nM) had a significant effect on QTc interval in Langendorff-perfused hearts. E-4031 (100 nM), on the other hand, significantly increased QTc interval (35.6+/-3.9%, n=8, P<0.05). 3. Similarly both chromanol 293B (10 microM) and L-735,821 (100 nM) produced little increase in papillary muscle APD (less than 7%) while pacing at cycle lengths between 300 and 5000 ms. In contrast, E-4031 (100 nM) markedly increased (30 - 60%) APD in a reverse frequency-dependent manner. 4. In ventricular myocytes, the same concentrations of chromanol 293B (10 microM), L-735,821 (100 nM) and E-4031 (1 microM) markedly or totally blocked I(Ks) and I(Kr), respectively. 5. I(Ks) tail currents activated slowly (at +30 mV, tau=888.1+/-48.2 ms, n=21) and deactivated rapidly (at -40 mV, tau=157.1+/-4.7 ms, n=22), while I(Kr) tail currents activated rapidly (at +30 mV, tau=35.5+/-3.1 ms, n=26) and deactivated slowly (at -40 mV, tau(1)=641.5+/-29.0 ms, tau(2)=6531+/-343, n=35). I(Kr) was estimated to contribute substantially more to total current density during normal ventricular muscle action potentials (i.e., after a 150 ms square pulse to +30 mV) than does I(Ks). 6. These findings indicate that block of I(Ks) is not likely to provide antiarrhythmic benefit by lengthening normal ventricular muscle QTc, APD, and refractoriness over a wide range of frequencies.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Excess weight gain and obesity are one of the most serious health problems in the western societies. These conditions enhance risk of cardiac disease and have been linked with increased prevalence for cardiac arrhythmias and sudden death. Our goal was to study the ventricular remodelling occurring in rabbits fed with high-fat diet (HFD) and its potential arrhythmogenic mechanisms. We used 15 NZW rabbits that were randomly assigned to a control (n = 7) or HFD group (n = 8) for 18 weeks. In vivo studies included blood glucose, electrocardiographic, and echocardiographic measurements. Optical mapping was performed in Langendorff-perfused isolated hearts. Body weight (3.69 ± 0.31 vs. 2.94 ± 0.18 kg, P < 0.001) and blood glucose levels (230 ± 61 vs. 141 ± 14 mg dL(-1) , P < 0.05) were higher in the HFD group vs. controls. The rate-corrected QT interval and its dispersion were increased in HFD rabbits vs. controls (169 ± 10 vs. 146 ± 13 ms and 37 ± 11 vs. 9 ± 2 ms, respectively; P < 0.05). Echocardiographic analysis showed morphological and functional alterations in HFD rabbits indicative of left ventricle (LV) hypertrophy. Isolated heart studies revealed no changes in repolarization and propagation properties under conditions of normal extracellular K(+) , suggesting that extrinsic factors could underlie those electrocardiographic modifications. There were no differences in the dynamics of ventricular fibrillation (frequency, wave breaks) in the presence of isoproterenol. However, HFD rabbits showed a small reduction in action potential duration and an increased incidence of arrhythmias during hyperkalaemia. High-fat feeding during 18 weeks in rabbits induced a type II diabetes phenotype, LV hypertrophy, abnormalities in repolarization and susceptibility to arrhythmias during hyperkalaemia.
    Acta Physiologica 10/2013; 211(1):36-47. · 4.38 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The cholesterol-lowering drug, probucol, is known to induce QT interval prolongation and torsades de pointes in patients. Recent in vitro studies have indicated that probucol reduces hERG expression in the plasma membrane and does not directly block human ether-a-go-go-related gene (hERG) channels. The present study was performed to investigate the effects of probucol on in vivo QT interval prolongation. Epicardial electrocardiograms were recorded in conscious dogs given oral single or repeated (7 days) doses of probucol (100mg/kg), and in combination with moxifloxacin (20mg/kg). QTc intervals were analysed by a probabilistic method with individual rate collection formulae. Values of change in QTc ( QTc) interval and its integration from 1 to 21h (AUC1-21h) were calculated to evaluate drug-induced QT prolongation. A single dose of probucol slightly but significantly increased the AUC1-21h QTc interval on days 2 and 3. The QT prolongation was markedly augmented by repeated doses of probucol in a time-dependent manner, despite the lack of increase in plasma concentration. The combination of probucol and moxifloxacin produced additive effects on QT interval prolongation. These results suggest that long-term exposure to the hERG expression inhibitor, probucol, is required to evaluate its maximal effects on in vivo QT interval prolongation. A combination of direct and indirect hERG inhibitors may produce simple additive effects on QT interval prolongation.
    European journal of pharmacology 11/2013; · 2.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diabetes is associated with an increased risk of sudden cardiac death, but the underlying mechanisms remain unclear. Our goal was to investigate changes occurring in the action potential duration (APD) and conduction velocity (CV) in the diabetic rabbit ventricle, and delineate the principal ionic determinants. A rabbit model of alloxan-induced diabetes was utilized. Optical imaging was used to record electrical activity in isolated Langendorff-perfused hearts in normo-, hypo- and hyper-kalemia ([K(+)]o=4, 2, 12 mM respectively). Patch clamp experiments were conducted to record Na(+) current (INa) in isolated ventricular myocytes. The mRNA/protein expression levels for Nav1.5 (the α-subunit of INa) and connexin-43 (Cx43), as well as fibrosis levels were examined. Computer simulations were performed to interpret experimental data. We found that the APD was not different, but that the CV was significantly reduced in diabetic hearts in normo-, hypo-, and, in hyper-kalemic conditions (13%, 17% and 33% reduction in diabetic vs. control, respectively). The cell capacitance (Cm) was increased (by ~14%), and the density of INa was reduced by ~32% in diabetes compared to controls, but the other biophysical properties of INa were unaltered. The mRNA/protein expression levels for Cx43 were unaltered. For Nav1.5, the mRNA expression was not changed, and though the protein level tended to be less in diabetic hearts, this reduction was not statistically significant. Staining showed no difference in fibrosis levels between the control and diabetic ventricles. Computer simulations showed that the reduced magnitude of INa was a key determinant of impaired propagation in the diabetic ventricle, which may have important implications for arrhythmogenesis.
    Journal of Molecular and Cellular Cardiology 01/2014; · 5.15 Impact Factor


Available from
May 29, 2014