Article

Pharmacological block of the slow component of the outward delayed rectifier current (I(Ks)) fails to lengthen rabbit ventricular muscle QT(c) and action potential duration.

Department of Internal Medicine, Faculty of Medicine, University of Szeged, Szeged, Hungary.
British Journal of Pharmacology (Impact Factor: 4.99). 01/2001; 132(1):101-10. DOI: 10.1038/sj.bjp.0703777
Source: PubMed

ABSTRACT 1. The effects of I(Ks) block by chromanol 293B and L-735,821 on rabbit QT-interval, action potential duration (APD), and membrane current were compared to those of E-4031, a recognized I(Kr) blocker. Measurements were made in rabbit Langendorff-perfused whole hearts, isolated papillary muscle, and single isolated ventricular myocytes. 2. Neither chromanol 293B (10 microM) nor L-735,821 (100 nM) had a significant effect on QTc interval in Langendorff-perfused hearts. E-4031 (100 nM), on the other hand, significantly increased QTc interval (35.6+/-3.9%, n=8, P<0.05). 3. Similarly both chromanol 293B (10 microM) and L-735,821 (100 nM) produced little increase in papillary muscle APD (less than 7%) while pacing at cycle lengths between 300 and 5000 ms. In contrast, E-4031 (100 nM) markedly increased (30 - 60%) APD in a reverse frequency-dependent manner. 4. In ventricular myocytes, the same concentrations of chromanol 293B (10 microM), L-735,821 (100 nM) and E-4031 (1 microM) markedly or totally blocked I(Ks) and I(Kr), respectively. 5. I(Ks) tail currents activated slowly (at +30 mV, tau=888.1+/-48.2 ms, n=21) and deactivated rapidly (at -40 mV, tau=157.1+/-4.7 ms, n=22), while I(Kr) tail currents activated rapidly (at +30 mV, tau=35.5+/-3.1 ms, n=26) and deactivated slowly (at -40 mV, tau(1)=641.5+/-29.0 ms, tau(2)=6531+/-343, n=35). I(Kr) was estimated to contribute substantially more to total current density during normal ventricular muscle action potentials (i.e., after a 150 ms square pulse to +30 mV) than does I(Ks). 6. These findings indicate that block of I(Ks) is not likely to provide antiarrhythmic benefit by lengthening normal ventricular muscle QTc, APD, and refractoriness over a wide range of frequencies.

0 Followers
 · 
86 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dynamics of repolarization, quantified as restitution and electrical memory, impact conduction stability. Relatively less is known about role of slow delayed rectifying potassium current, I Ks, in dynamics of repolarization and memory compared to the rapidly activating current I Kr. Trans-membrane potentials were recorded from right ventricular tissues from pigs during reduction (chromanol 293B) and increases in I Ks (mefenamic acid). A novel pacing protocol was used to explicitly control diastolic intervals to quantify memory. Restitution hysteresis, a consequence of memory, increased after chromanol 293B (loop thickness and area increased 27 and 38 %) and decreased after mefenamic acid (52 and 53 %). Standard and dynamic restitutions showed an increase in average slope after chromanol 293B and a decrease after mefenamic acid. Increase in slope and memory are hypothesized to have opposite effects on electrical stability; therefore, these results suggest that reduction and enhancement of I Ks likely also have offsetting components that affect stability.
    The Journal of Physiological Sciences 03/2014; DOI:10.1007/s12576-014-0310-2 · 1.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: β-Adrenergic stimulation differentially modulates different K(+) channels and thus fine-tunes cardiac action potential (AP) repolarization. However, it remains unclear how the proportion of I Ks, I Kr, and I K1 currents in the same cell would be altered by β-adrenergic stimulation, which would change the relative contribution of individual K(+) current to the total repolarization reserve. In this study, we used an innovative AP-clamp sequential dissection technique to directly record the dynamic I Ks, I Kr, and I K1 currents during the AP in guinea pig ventricular myocytes under physiologically relevant conditions. Our data provide quantitative measures of the magnitude and time course of I Ks, I Kr, and I K1 currents in the same cell under its own steady-state AP, in a physiological milieu, and with preserved Ca(2+) homeostasis. We found that isoproterenol treatment significantly enhanced I Ks, moderately increased I K1, but slightly decreased I Kr in a dose-dependent manner. The dominance pattern of the K(+) currents was I Kr > I K1 > I Ks at the control condition, but reversed to I Kr < I K1 < I Ks following β-adrenergic stimulation. We systematically determined the changes in the relative contribution of I Ks, I Kr, and I K1 to cardiac repolarization during AP at different adrenergic states. In conclusion, the β-adrenergic stimulation fine-tunes the cardiac AP morphology by shifting the power of different K(+) currents in a dose-dependent manner. This knowledge is important for designing antiarrhythmic drug strategies to treat hearts exposed to various sympathetic tones.
    Pflügers Archiv - European Journal of Physiology 02/2014; 466(11). DOI:10.1007/s00424-014-1465-7 · 3.07 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Isolated hearts with reduced repolarization reserve would be suitable for assessing the proarrhythmic liability of drugs. However, it is not known which proarrhythmia biomarkers indicate the increased susceptibility to torsades de pointes arrhythmia (TdP) in such experimental setting. Thus, we estimated the efficacy of proarrhythmia biomarkers in isolated hearts with attenuated repolarization reserve.Langendorff-perfused rabbit hearts were used. Repolarization reserve was reduced by concomitant inhibition of the rapid (IKr) and slow (IKs) delayed rectifier potassium currents by dofetilide and HMR-1556, respectively. Rate corrected QT (QTc) interval and beat-to-beat variability of the QT interval measured in sinus rhythm or irrespective of rhythm even during arrhythmias (sinus and absolute QT variability, respectively) were tested.QTc failed to predict increased proarrhythmic risk. Sinus QT variability indicated proarrhythmic liability when low concentration of dofetilide was used. However, when arrhythmias compromised sinus variability measurement during co-perfusion of catecholamines and elevated concentration of dofetilide, only absolute QT variability indicated increased proarrhythmic risk.
    Journal of Cardiovascular Pharmacology 05/2014; DOI:10.1097/FJC.0000000000000116 · 2.11 Impact Factor