Article

Visual perceptual learning in human object recognition areas: a repetition priming study using high-density electrical mapping.

Cognitive Neurophysiology Laboratory, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA.
NeuroImage (Impact Factor: 6.25). 03/2001; 13(2):305-13. DOI: 10.1006/nimg.2000.0684
Source: PubMed

ABSTRACT It is often the case that only partial or degraded views of an object are available to an observer, and yet in many of these cases, object recognition is accomplished with surprising ease. The perceptual filling-in or "closure" that makes this possible has been linked to a group of object recognition areas in the human brain, the lateral occipital (LO) complex, and has been shown to have a specific electrophysiological correlate, the N(cl) component of the event related potential. Perceptual closure presumably occurs because repeated and varied exposure to different classes of objects has caused the brain to undergo "perceptual learning," which promotes a robust mnemonic representation, accessible under partial information circumstances. The present study examined the impact of perceptual learning on closure-related brain processes. Fragmented pictures of common objects were presented, such that information content was incrementally increased until just enough information was present to permit closure and object recognition. Periodic repetition of a subset of these picture sequences was used to induce repetition priming due to perceptual learning. This priming has an electrophysiological signature that is putatively generated in the LO complex, but significantly precedes the electrophysiological correlate of closure. The temporal progression of priming- and closure-related activity in the LO complex supports the view that sensory processing entails multiple reentrant stages of activity within processing modules of the visual hierarchy. That the earliest priming-related activity occurs over LO complex, suggests that the sensory trace itself may reside in these object recognition areas.

0 Bookmarks
 · 
46 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The way we perceive an object depends both on feedforward, bottom-up processing of its physical stimulus properties and on top-down factors such as attention, context, expectation, and task relevance. Here we compared neural activity elicited by varying perceptions of the same physical image-a bistable moving image in which perception spontaneously alternates between dissociated fragments and a single, unified object. A time-frequency analysis of EEG changes associated with the perceptual switch from object to fragment and vice versa revealed a greater decrease in alpha (8-12 Hz) accompanying the switch to object percept than to fragment percept. Recordings of event-related potentials elicited by irrelevant probes superimposed on the moving image revealed an enhanced positivity between 184 and 212 ms when the probes were contained within the boundaries of the perceived unitary object. The topography of the positivity (P2) in this latency range elicited by probes during object perception was distinct from the topography elicited by probes during fragment perception, suggesting that the neural processing of probes differed as a function of perceptual state. Two source localization algorithms estimated the neural generator of this object-related difference to lie in the lateral occipital cortex, a region long associated with object perception. These data suggest that perceived objects attract attention, incorporate visual elements occurring within their boundaries into unified object representations, and enhance the visual processing of elements occurring within their boundaries. Importantly, the perceived object in this case emerged as a function of the fluctuating perceptual state of the viewer.
    Journal of Vision 07/2013; 13(13). · 2.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: WE LIVE IN A CLUTTERED, DYNAMIC VISUAL ENVIRONMENT THAT POSES A CHALLENGE FOR THE VISUAL SYSTEM: for objects, including those that move about, to be perceived, information specifying those objects must be integrated over space and over time. Does a single, omnibus mechanism perform this grouping operation, or does grouping depend on separate processes specialized for different feature aspects of the object? To address this question, we tested a large group of healthy young adults on their abilities to perceive static fragmented figures embedded in noise and to perceive dynamic point-light biological motion figures embedded in dynamic noise. There were indeed substantial individual differences in performance on both tasks, but none of the statistical tests we applied to this data set uncovered a significant correlation between those performance measures. These results suggest that the two tasks, despite their superficial similarity, require different segmentation and grouping processes that are largely unrelated to one another. Whether those processes are embodied in distinct neural mechanisms remains an open question.
    Frontiers in Psychology 01/2013; 4:795. · 2.80 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The adult human visual system can efficiently fill-in missing object boundaries when low-level information from the retina is incomplete, but little is known about how these processes develop across childhood. A decade of visual-evoked potential (VEP) studies has produced a theoretical model identifying distinct phases of contour completion in adults. The first, termed a perceptual phase, occurs from approximately 100-200ms and is associated with automatic boundary completion. The second is termed a conceptual phase occurring between 230-400ms. The latter has been associated with the analysis of ambiguous objects which seem to require more effort to complete. The electrophysiological markers of these phases have both been localized to the lateral occipital complex, a cluster of ventral visual stream brain regions associated with object-processing. We presented Kanizsa-type illusory contour stimuli, often used for exploring contour completion processes, to neurotypical persons ages 6-31 (N=63), while parametrically varying the spatial extent of these induced contours, in order to better understand how filling-in processes develop across childhood and adolescence. Our results suggest that, while adults complete contour boundaries in a single discrete period during the automatic perceptual phase, children display an immature response pattern - engaging in more protracted processing across both timeframes and appearing to recruit more widely distributed regions which resemble those evoked during adult processing of higher-order ambiguous figures. However, children older than 5years of age were remarkably like adults in that the effects of contour processing were invariant to manipulation of contour extent.
    NeuroImage 12/2013; · 6.25 Impact Factor

Full-text (2 Sources)

Download
168 Downloads
Available from
May 16, 2014