Article

Tonic and burst firing: dual modes of thalamocortical relay.

Department of Neurobiology, State University of New York, Stony Brook, New York, NY 11794-5230, USA.
Trends in Neurosciences (Impact Factor: 13.58). 03/2001; 24(2):122-6. DOI: 10.1016/S0166-2236(00)01714-8
Source: PubMed

ABSTRACT All thalamic relay cells exhibit two distinct response modes--tonic and burst--that reflect the status of a voltage-dependent, intrinsic membrane conductance. Both response modes efficiently relay information to the cortex in behaving animals, but have markedly different consequences for information processing. The lateral geniculate nucleus, which is the thalamic relay of retinal information to cortex, provides a reasonable model for all of thalamus. Compared with burst mode, geniculate relay cells that are firing in tonic mode exhibit better linear summation, but have poorer detectability for visual stimuli. The switch between the response modes can be controlled by nonretinal, modulatory afferents to these cells, such as the feedback pathway from cortex. This allows the thalamus to provide a dynamic relay that affects the nature and format of information that reaches the cortex.

2 Bookmarks
 · 
128 Views
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ability to acquire and maintain appropriate representations of time-varying, sequential stimulus events is a fundamental feature of neocortical circuits and a necessary first step toward more specialized information processing. The dynamical properties of such representations depend on the current state of the circuit, which is determined primarily by the ongoing, internally generated activity, setting the ground state from which input-specific transformations emerge. Here, we begin by demonstrating that timing-dependent synaptic plasticity mechanisms have an important role to play in the active maintenance of an ongoing dynamics characterized by asynchronous and irregular firing, closely resembling cortical activity in vivo. Incoming stimuli, acting as perturbations of the local balance of excitation and inhibition, require fast adaptive responses to prevent the development of unstable activity regimes, such as those characterized by a high degree of population-wide synchrony. We establish a link between such pathological network activity, which is circumvented by the action of plasticity, and a reduced computational capacity. Additionally, we demonstrate that the action of plasticity shapes and stabilizes the transient network states exhibited in the presence of sequentially presented stimulus events, allowing the development of adequate and discernible stimulus representations. The main feature responsible for the increased discriminability of stimulus-driven population responses in plastic networks is shown to be the decorrelating action of inhibitory plasticity and the consequent maintenance of the asynchronous irregular dynamic regime both for ongoing activity and stimulus-driven responses, whereas excitatory plasticity is shown to play only a marginal role.
    Frontiers in Computational Neuroscience 10/2014; 8(124). · 2.48 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inhibitory interneurons (INs) in the lateral geniculate nucleus (LGN) provide both axonal and dendritic GABA output to thalamocortical relay cells (TCs). Distal parts of the IN dendrites often enter into complex arrangements known as triadic synapses, where the IN dendrite plays a dual role as postsynaptic to retinal input and presynaptic to TC dendrites. Dendritic GABA release can be triggered by retinal input, in a highly localized process that is functionally isolated from the soma, but can also be triggered by somatically elicited Ca2+-spikes and possibly by backpropagating action potentials. Ca2+-spikes in INs are predominantly mediated by T-type Ca2+-channels (T-channels). Due to the complex nature of the dendritic signalling, the function of the IN is likely to depend critically on how T-channels are distributed over the somatodendritic membrane (T-distribution). To study the relationship between the T-distribution and several IN response properties, we here run a series of simulations where we vary the T-distribution in a multicompartmental IN model with a realistic morphology. We find that the somatic response to somatic current injection is facilitated by a high T-channel density in the soma-region. Conversely, a high T-channel density in the distal dendritic region is found to facilitate dendritic signalling in both the outward direction (increases the response in distal dendrites to somatic input) and the inward direction (the soma responds stronger to distal synaptic input). The real T-distribution is likely to reflect a compromise between several neural functions, involving somatic response patterns and dendritic signalling.
    PLoS ONE 01/2014; 9(9):e107780. · 3.53 Impact Factor

Full-text

Download
0 Downloads
Available from