Distinct expression patterns for two Xenopus Bar homeobox genes.

Division of Molecular Cell and Developmental Biology, School of Biological Sciences, University of Texas at Austin, Austin, TX 78712, USA.
Development Genes and Evolution (Impact Factor: 2.18). 04/2000; 210(3):140-4. DOI: 10.1007/s004270050020
Source: PubMed

ABSTRACT The BarH1 and BarH2 homeobox genes are coexpressed in cells of the fly retina and in the central and peripheral nervous systems. The fly Bar genes are required for normal development of the eye and external sensory organs. In Xenopus we have identified two distinct vertebrate Bar-related homeobox genes, XBH1 and XBH2. XBH1 is highly related in sequence and expression pattern to a mammalian gene, MBH1, suggesting that they are orthologues. XBH2 has not previously been identified but is clearly related to the Drosophila Bar genes. During early Xenopus embryogenesis XBH1 and XBH2 are expressed in overlapping regions of the central nervous system. XBH1, but not XBH2, is expressed in the developing retina. By comparing the expression of XBH1 with that of hermes, a marker of differentiated retinal ganglion cells, we show that XBH1 is expressed in retinal ganglion cells during the differentiation process, but is down-regulated as cells become terminally differentiated.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The effects of the Bar (B) andwhite (w) mutations on the expressiveness of the character vestigial (vg) and the degree of polyteny of salivary gland giant chromosomes were studied in Drosophila melanogaster.Either mutation changed both the expressiveness of vestigial and the degree of chromosome polyteny. A negative association between the vg expressiveness and the degree of chromosome polyteny was revealed and proved to be stronger in females than in males. The parameters under study were shown to differ between females and males.
    Russian Journal of Genetics 11/2002; 38(12):1371-1375. · 0.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Translating Ribosome Affinity Purification (TRAP), a method recently developed to generate cell type-specific translational profiles, relies on creating transgenic lines of animals in which a tagged ribosomal protein is placed under regulatory control of a cell type-specific promoter. An antibody is then used to affinity purify the tagged ribosomes so that cell type-specific mRNAs can be isolated from whole tissue lysates. Results: Here, cell type-specific transgenic lines were generated to enable TRAP studies for retinal ganglion cells and rod photoreceptors in the Xenopus laevis retina. Using real time quantitative PCR for assessing expression levels of cell type-specific mRNAs, the TRAP method was shown to selectively isolate mRNAs expressed in the targeted cell and was efficient at purifying mRNAs expressed at both high and low levels. Statistical measures used to distinguish cell type-specific RNAs from low level background and non-specific RNAs showed TRAP to be highly effective in Xenopus. Conclusions: TRAP can be used to purify mRNAs expressed in rod photoreceptors and retinal ganglion cells in Xenopus laevis. The generated transgenic lines will enable numerous studies into the development, disease and injury of the Xenopus laevis retina.
    Developmental Dynamics 10/2012; 241(12). · 2.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The histone methyltransferase complex PRC2 controls key steps in developmental transitions and cell fate choices; however, its roles in vertebrate eye development remain unknown. Here, we report that in Xenopus, PRC2 regulates the progression of retinal progenitors from proliferation to differentiation. We show that the PRC2 core components are enriched in retinal progenitors and downregulated in differentiated cells. Knockdown of the PRC2 core component Ezh2 leads to reduced retinal progenitor proliferation, in part due to upregulation of the Cdk inhibitor p15(Ink4b). In addition, although PRC2 knockdown does not alter eye patterning, retinal progenitor gene expression or expression of the neural competence factor Sox2, it does cause suppression of proneural bHLH gene expression, indicating that PRC2 is crucial for the initiation of neural differentiation in the retina. Consistent with this, knocking down or blocking PRC2 function constrains the generation of most retinal neural cell types and promotes a Müller glial cell fate decision. We also show that Wnt/β-catenin signaling acting through the receptor Frizzled 5, but independent of Sox2, regulates expression of key PRC2 subunits in the developing retina. This is consistent with a role for this pathway in coordinating proliferation and the transition to neurogenesis in the Xenopus retina. Our data establish PRC2 as a regulator of proliferation and differentiation during eye development.
    Development 06/2013; · 6.27 Impact Factor