Article

Neuroendocrine and behavioral effects of repetitive transcranial magnetic stimulation in a psychopathological animal model are suggestive of antidepressant-like effects

Max Planck Institute of Psychiatry, Munich, Germany.
Neuropsychopharmacology (Impact Factor: 7.83). 05/2001; 24(4):337-49. DOI: 10.1016/S0893-133X(00)00191-3
Source: PubMed

ABSTRACT The neuroendocrine and behavioral effects of repetitive transcranial magnetic stimulation (rTMS) were investigated in two rat lines selectively bred for high and low anxiety-related behavior. The stimulation parameters were adjusted according to the results of accurate computer-assisted and magnetic resonance imaging-based reconstructions of the current density distributions induced by rTMS in the rat and human brain, ensuring comparable stimulation patterns in both cases. Adult male rats were treated in two 3-day series under halothane anesthesia. In the forced swim test, rTMS-treatment induced a more active coping strategy in the high anxiety-related behavior rats only (time spent struggling; 332% vs. controls), allowing these animals to reach the performance of low anxiety-related behavior rats. In contrast, rTMS-treated low anxiety-related behavior rats did not change their swimming behavior. The development of active coping strategies in high anxiety-related behavior rats was accompanied by a significantly attenuated stress-induced elevation of plasma corticotropin and corticosterone concentrations. In summary, the behavioral and neuroendocrine effects of rTMS of frontal brain regions in high anxiety-related behavior rats are comparable to the effects of antidepressant drug treatment. Interestingly, in the psychopathological animal model repetitive transcranial magnetic stimulation induced changes in stress coping abilities in the high-anxiety line only.

Download full-text

Full-text

Available from: Mario Engelmann, Jul 01, 2015
0 Followers
 · 
78 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Patients suffering from anxiety disorders show increased fear when encounter a novel environment. Rodents, placed in new environmental context may respond either with increased novelty seeking (active), or enhanced anxiety (passive coping style), which may depend on the trait anxiety of the animal. Here, the connection between the initial level of anxiety and the behavioral responses in a novel environment was investigated. Two inbred mouse strains having either high- or low-anxiety related behavior (AX and nAX) were exposed to elevated plus maze (EPM), a standard test for assessing anxiety level, for 8 consecutive days. The initial anxiety level was modulated by chronic treatment with buspirone (bus) treatment, a clinically effective anxiolytic, using 2.5mg/kg and 5.0mg/kg doses. Both strains showed a gradual decrease of open-arm exploration, which was not prevented by bus treatment. Another cohort of animals was exposed to EPM for 2 days, and then we changed to blue light illumination and used a different cleaning substance with citrus odor (context change, CC). It was found that upon CC AX mice exhibited increased, while nAX mice showed decreased anxiety. Bus in 2.5mg/kg changed the coping strategy from passive to active exploration after CC in the AX mice; however, the same treatment rendered nAX mice passive upon CC. Bus in 5.0mg/kg failed to alter the overall coping style in the novel environment of both strains. These results suggest that these mouse lines use different coping strategy in novel context, which can be changed with bus treatment.
    Behavioural brain research 04/2013; 250. DOI:10.1016/j.bbr.2013.04.014 · 3.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Major depressive disorder (MDD) is marked by disturbances in brain functional connectivity. This connectivity is modulated by rhythmic oscillations of brain electrical activity, which enable coordinated functions across brain regions. Oscillatory activity plays a central role in regulating thinking and memory, mood, cerebral blood flow, and neurotransmitter levels, and restoration of normal oscillatory patterns is associated with effective treatment of MDD. Repetitive transcranial magnetic stimulation (rTMS) is a robust treatment for MDD, but the mechanism of action (MOA) of its benefits for mood disorders remains incompletely understood. Benefits of rTMS have been tied to enhanced neuroplasticity in specific brain pathways. We summarize here the evidence that rTMS entrains and resets thalamocortical oscillators, normalizes regulation and facilitates reemergence of intrinsic cerebral rhythms, and through this mechanism restores normal brain function. This entrainment and resetting may be a critical step in engendering neuroplastic changes and the antidepressant effects of rTMS. It may be possible to modify the method of rTMS administration to enhance this MOA and achieve better antidepressant effectiveness. We propose that rTMS can be administered: (1) synchronized to a patient's individual alpha frequency (IAF), or synchronized rTMS (sTMS); (2) as a low magnetic field strength sinusoidal waveform; and, (3) broadly to multiple brain areas simultaneously. We present here the theory and evidence indicating that these modifications could enhance the therapeutic effectiveness of rTMS for the treatment of MDD.
    Frontiers in Human Neuroscience 02/2013; 7:37. DOI:10.3389/fnhum.2013.00037 · 2.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive procedure whereby a pulsed magnetic field stimulates electrical activity in the brain. Anxiety disorders are the most common of all mental health problems for which effective, mechanism-based treatments remain elusive. Consequently, more advanced non-invasive therapeutic methods are required. A possible method to modulate brain activity and potentially viable for use in clinical practice is rTMS. Here, we focus on the main findings of rTMS from animal models of anxiety and the experimental advances of rTMS that may become a viable clinical application to treat anxiety disorders, one of the most common causes of disability in the workplace in the world. Key advances in combining rTMS with neuroimaging technology may aid such future developments. This article is part of a Special Issue entitled 'Anxiety and Depression'.
    Neuropsychopharmacology 07/2011; 62(1):125-34. DOI:10.1016/j.neuropharm.2011.07.024 · 7.83 Impact Factor