Neuroendocrine and behavioral effects of repetitive transcranial magnetic stimulation in a psychopathological animal model are suggestive of antidepressant-like effects

Max Planck Institute of Psychiatry, Munich, Germany.
Neuropsychopharmacology (Impact Factor: 7.05). 05/2001; 24(4):337-49. DOI: 10.1016/S0893-133X(00)00191-3
Source: PubMed


The neuroendocrine and behavioral effects of repetitive transcranial magnetic stimulation (rTMS) were investigated in two rat lines selectively bred for high and low anxiety-related behavior. The stimulation parameters were adjusted according to the results of accurate computer-assisted and magnetic resonance imaging-based reconstructions of the current density distributions induced by rTMS in the rat and human brain, ensuring comparable stimulation patterns in both cases. Adult male rats were treated in two 3-day series under halothane anesthesia. In the forced swim test, rTMS-treatment induced a more active coping strategy in the high anxiety-related behavior rats only (time spent struggling; 332% vs. controls), allowing these animals to reach the performance of low anxiety-related behavior rats. In contrast, rTMS-treated low anxiety-related behavior rats did not change their swimming behavior. The development of active coping strategies in high anxiety-related behavior rats was accompanied by a significantly attenuated stress-induced elevation of plasma corticotropin and corticosterone concentrations. In summary, the behavioral and neuroendocrine effects of rTMS of frontal brain regions in high anxiety-related behavior rats are comparable to the effects of antidepressant drug treatment. Interestingly, in the psychopathological animal model repetitive transcranial magnetic stimulation induced changes in stress coping abilities in the high-anxiety line only.

Download full-text


Available from: Mario Engelmann,
  • Source
    • "We found that during the first 15 minutes into the plethysmograph HAB rats spent relatively less time at high-frequency sniffing mode than LABs. Previous studies have demonstrated that HAB and LAB rats differ in their coping strategies, with HABs displaying reduced exploratory drive and preferring more passive strategies [14], [22]. Our hypothesis is that the reduction in exploratory sniffing that we observed in HAB rats might thus be a function of a decreased motivational state in these animals and interpreted as a sign of preference for passivity, a behavior that is commonly taken as an indicator of increased anxiety [14]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In humans, there is unequivocal evidence of an association between anxiety states and altered respiratory function. Despite this, the link between anxiety and respiration has been poorly evaluated in experimental animals. The primary objective of the present study was to investigate the hypothesis that genetic lines of rats that differ largely in their anxiety level would display matching alterations in respiration. To reach this goal, respiration was recorded in high-anxiety behavior (HAB, n = 10) and low-anxiety behavior (LAB, n = 10) male rats using whole-body plethysmography. In resting state, respiratory rate was higher in HABs (85±2 cycles per minute, cpm) than LABs (67±2 cpm, p<0.05). During initial testing into the plethysmograph and during a restraint test, HAB rats spent less time at high-frequency sniffing compared to LAB rats. In addition, HAB rats did not habituate in terms of respiratory response to repetitive acoustic stressful stimuli. Finally, HAB rats exhibited a larger incidence of sighs during free exploration of the plethysmograph and under stress conditions. We conclude that: i) HAB rats showed respiratory changes (elevated resting respiratory rate, reduced sniffing in novel environment, increased incidence of sighs, and no habituation of the respiratory response to repetitive stimuli) that resemble those observed in anxious and panic patients, and ii) respiratory patterns may represent a promising way for assessing anxiety states in preclinical studies.
    PLoS ONE 05/2013; 8(5):e64519. DOI:10.1371/journal.pone.0064519 · 3.23 Impact Factor
  • Source
    • "Differences in the trait anxiety level may be accompanied by different coping strategy or resilience to stress. Indeed, rats bred for extremes in anxiety were shown to use active (less anxious) or passive (more anxious) coping strategy in the forced swim [14] [15] and hole-board test [20]. Previously, we have developed two mouse strains having either high-or low-anxiety related behavior (AX and nAX, respectively) as was shown in the EPM, open-field, and light/dark test [28] [31]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Patients suffering from anxiety disorders show increased fear when encounter a novel environment. Rodents, placed in new environmental context may respond either with increased novelty seeking (active), or enhanced anxiety (passive coping style), which may depend on the trait anxiety of the animal. Here, the connection between the initial level of anxiety and the behavioral responses in a novel environment was investigated. Two inbred mouse strains having either high- or low-anxiety related behavior (AX and nAX) were exposed to elevated plus maze (EPM), a standard test for assessing anxiety level, for 8 consecutive days. The initial anxiety level was modulated by chronic treatment with buspirone (bus) treatment, a clinically effective anxiolytic, using 2.5mg/kg and 5.0mg/kg doses. Both strains showed a gradual decrease of open-arm exploration, which was not prevented by bus treatment. Another cohort of animals was exposed to EPM for 2 days, and then we changed to blue light illumination and used a different cleaning substance with citrus odor (context change, CC). It was found that upon CC AX mice exhibited increased, while nAX mice showed decreased anxiety. Bus in 2.5mg/kg changed the coping strategy from passive to active exploration after CC in the AX mice; however, the same treatment rendered nAX mice passive upon CC. Bus in 5.0mg/kg failed to alter the overall coping style in the novel environment of both strains. These results suggest that these mouse lines use different coping strategy in novel context, which can be changed with bus treatment.
    Behavioural brain research 04/2013; 250. DOI:10.1016/j.bbr.2013.04.014 · 3.03 Impact Factor
  • Source
    • "In one study, rapid tryptophan depletion did not lead to reemergence of depressive symptoms in adults who had responded to a course of rTMS (O'Reardon et al., 2007), suggesting that the therapeutic effects of rTMS do not depend critically upon central serotonergic tone. Effects on neuroendocrine measures also have been reported in animals (Keck et al., 2001; Hedges et al., 2003; Kito et al., 2010) and in humans undergoing rTMS (Pridmore, 1999; Cohrs et al., 2001; Zwanzger et al., 2003), and hippocampal neurogenesis has been reported in animals (Czeh et al., 2002). A cautionary note about interpreting these animal studies has been sounded by Lisanby and Belmaker (2000): while therapeutic rTMS in humans tends to involve stimulation of a spatially-limited portion of brain tissue, most if not all of the animal brain is exposed to high levels of the magnetic field in these experimental paradigms, due to the different size of animals and the physics of generating magnetic fields. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Major depressive disorder (MDD) is marked by disturbances in brain functional connectivity. This connectivity is modulated by rhythmic oscillations of brain electrical activity, which enable coordinated functions across brain regions. Oscillatory activity plays a central role in regulating thinking and memory, mood, cerebral blood flow, and neurotransmitter levels, and restoration of normal oscillatory patterns is associated with effective treatment of MDD. Repetitive transcranial magnetic stimulation (rTMS) is a robust treatment for MDD, but the mechanism of action (MOA) of its benefits for mood disorders remains incompletely understood. Benefits of rTMS have been tied to enhanced neuroplasticity in specific brain pathways. We summarize here the evidence that rTMS entrains and resets thalamocortical oscillators, normalizes regulation and facilitates reemergence of intrinsic cerebral rhythms, and through this mechanism restores normal brain function. This entrainment and resetting may be a critical step in engendering neuroplastic changes and the antidepressant effects of rTMS. It may be possible to modify the method of rTMS administration to enhance this MOA and achieve better antidepressant effectiveness. We propose that rTMS can be administered: (1) synchronized to a patient's individual alpha frequency (IAF), or synchronized rTMS (sTMS); (2) as a low magnetic field strength sinusoidal waveform; and, (3) broadly to multiple brain areas simultaneously. We present here the theory and evidence indicating that these modifications could enhance the therapeutic effectiveness of rTMS for the treatment of MDD.
    Frontiers in Human Neuroscience 02/2013; 7:37. DOI:10.3389/fnhum.2013.00037 · 3.63 Impact Factor
Show more