Thirty-six views of T-cell recognition

The Department of Microbiology and Immunology, and The Howard Hughes Medical Institute, Stanford University School of Medicine, CA 94305, USA.
Philosophical Transactions of The Royal Society B Biological Sciences (Impact Factor: 6.31). 09/2000; 355(1400):1071-6. DOI: 10.1098/rstb.2000.0644
Source: PubMed

ABSTRACT While much is known about the signalling pathways within lymphocytes that are triggered during activation, much less is known about how the various cell surface molecules on T cells initiate these events. To address this, we have focused on the primary interaction that drives T-cell activation, namely the binding of a particular T-cell receptor (TCR) to peptide-MHC ligands, and find a close correlation between biological activity and off-rate; that is, the most stimulatory TCR ligands have the slowest dissociation rates. In general, TCRs from multiple histocompatibility complex (MHC) class-II-restricted T cells have half-lives of 1-11s at 25 degrees C, a much narrower range than found with antibodies and suggesting a strong selection for an optimum dissociation rate. TCR ligands with even faster dissociation rates tend to be antagonists. To observe the effects of these different ligands in their physiological setting, we made gene fusions of various molecules with green fluorescent protein (GFP), transfected them into the relevant lymphocytes, and observed their movements during T-cell recognition using multicolour video microscopy. We find that clustering of CD3zeta-GFP and CD4-GFP on the Tcell occurs concomitantly or slightly before the first rise in calcium by the T cell, and that various GFP-labelled molecules on the B-cell side cluster shortly thereafter (ICAM-1, class II MHC, CD48), apparently driven byT-cell molecules. Most of this movement towards the interface is mediated by signals through the co-stimulatory receptors, CD28 and LFA-1, and involves myosin motors and the cortical actin cytoskeleton. Thus, we have proposed that the principal mechanism by which co-stimulation enhances T-cell responsiveness is by increasing the local density of T-cell activation molecules, their ligands and their attendant signalling apparatus. In collaboration with Michael Dustin and colleagues, we have also found that the formation and stability of the TCR-peptide-MHC cluster at the centre of the interaction cap between T and B cells is highly dependent on the dissociation rate of the TCR and its ligand. Thus, we are able to link this kinetic parameter to the formation of a cell surface structure that is linked to and probably causal with respect to T-cell activation.

Download full-text


Available from: Christoph Wuelfing, Aug 10, 2015
1 Follower
  • Source
    • "Interestingly , the specific triggering rate w ij is maximal at an intermediate dissociation time on the order of T R ( Fig . 1 ) ; cf . Kalergis et al . ( 2001 ) ; Krummel et al . ( 2000 ) ; Lanzavecchia et al . ( 1999 ) . A pMHC j for which w ij achieves its maximum value is called an optimal agonist ."
    [Show abstract] [Hide abstract]
    ABSTRACT: We consider the way in which antigen is presented to T cells on MHC molecules and ask how MHC peptide presentation could be optimized so as to obtain an effective and safe immune response. By analysing this problem with a mathematical model of T-cell activation, we deduce the need for both MHC restriction and high presentation selectivity. We find that the optimal selectivity is such that about one pathogen-derived peptide is presented per MHC isoform, on the average. We also indicate upper and lower bounds to the number of MHC isoforms per individual based on detectability requirements. Thus we deduce that an important role of MHC presentation is to act as a filter that limits the diversity of antigen presentation.
    Journal of Theoretical Biology 10/2003; 224(2):249-67. DOI:10.1016/S0022-5193(03)00162-0 · 2.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ability to track antigen (Ag)-specific lymphocyte populations in vivo has greatly increased our understanding of the location and functional status of these cells throughout the course of an immune response. Recent technical advances have enhanced researchers' capability to follow migration, activation and cellular interactions of Ag-specific lymphocytes in situ. It is now possible to monitor changes in T cell subsets, co-stimulatory molecules, and chemokine expression within the physiological context of secondary lymphoid organs. Furthermore, the Ag-presenting cell-T cell interaction can be studied,thus dissecting the role and timing of Ag presentation of particular dendritic cell subsets in the initiation of the immune response. The capacity to adoptively transfer small populations of Ag-specific T lymphocytes has also increased our knowledge of the physiologically important role of regulatory T cells in autoimmunity and immunosuppression. New fluorescence imaging techniques such as multicolor video microscopy, laser scanning cytometry, and multiphoton tissue imaging have provided new ways in which researchers can track cellular changes within Ag-specific lymphocytes in vivo. This review summarizes some of the ways in which these techniques have led to discoveries in the role of signaling cascades, cell cycle progression, and apoptosis in maintaining an Ag-specific immune response.
    Archivum Immunologiae et Therapiae Experimentalis 52(3):173-87. · 2.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Le lymphocyte T est une cellule clé de l'immunité spécifique. Dans le but de créer un outil de compréhension et de prédiction de certains mécanismes immunitaires, une modélisation de la réponse immunitaire du lymphocyte T est proposée. L'activation du lymphocyte par la reconnaissance d'un peptide apprêté par une cellule présentatrice d'antigène est une étape essentielle de cette réponse immunitaire. Cette activation a été modélisée par un système d'équations différentielles ordinaires, de type cinétique chimique, représentant l'évolution temporelle des concentrations de différentes protéines lymphocytaires (TCR/CD3, CD28, CD69, CD25, IL-2). Afin de considérer une quantité d'antigène variable dans l'organisme, un modèle de prolifération virale a aussi été écrit, basé sur des exemples de modèles proies/prédateurs, obtenant ainsi un système d'équations différentielles ordinaires mettant en jeu un virus donné, les cellules cibles du virus, saines ou infectées, et l'action des lymphocytes T cytotoxiques. Un couplage de ces deux modèles (activation lymphocytaire T et prolifération virale) permet une approche de simulation de la réponse lymphocytaire T spécifique à une infection virale.
Show more