Full-text

Available from: Shirley Henderson, Jun 12, 2015
2 Followers
 · 
81 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe a sib recurrence for achondroplasia with parents of average stature. The three sibs shared the paternal allele and all carried the same causal mutation in the fibroblast growth factor receptor 3 gene (FGFR3): G > A nt1138 (Gly380Arg). We were able to identify this mutation on sperm DNA confirming paternal germinal mosaicism. Our family shows that a more precise definition of the recurrence risk is feasible using this approach, based on a single DNA test, which could be offered in selected cases.
    American Journal of Medical Genetics Part A 03/2008; 146A(6):784-6. DOI:10.1002/ajmg.a.32228 · 2.05 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The origin and frequency of spontaneous mutations that occur with age in humans have been a topic of intense discussion. The mechanisms by which spontaneous mutations arise depend on the parental germ line in which a mutation occurs. In general, paternal mutations are more likely than maternal mutations to be base substitutions. This is likely due to the larger number of germ cell divisions in spermatogenesis than in oogenesis. Maternal mutations are more often chromosomal abnormalities. Advanced parental age seems to influence some mutations, although it is not a factor in the creation of others. In this review, we focus on patterns of paternal bias and age dependence of mutations in different genetic disorders, and the various mechanisms by which these mutations arise. We also discuss recent data on age and the frequency of these mutations in the human male germ line and the impact of these data on this field of research.
    Science of Aging Knowledge Environment 02/2004; 2004(3):re1. DOI:10.1126/sageke.2004.3.re1
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this thesis, one of the most frequently occurring and most variable craniosynostosis syndromes was investigated; Saethre-Chotzen syndrome. Craniosynostosis is the premature obliteration of cranial sutures in the developing embryo. It can also occur in the first few months of life. Saethre-Chotzen syndrome is, besides craniosynostosis, characterized by specific facial and limb abnormalities, of which the most frequently reported are ptosis, prominent crus helicis, cutaneous syndactyly of digit 2 and 3 on both hands and feet, and broad halluces. Saethre-Chotzen syndrome has been linked to the TWIST gene on chromosome 7p21.1. Mutations in and variably sized deletions of this gene can be found in patients with clinical features of Saethre-Chotzen syndrome. The latter, TWIST deletions, often also include part of the surrounding chromosome 7p and are reported to be associated with mental retardation. In Saethre-Chotzen patients, in whom neither a mutation nor a deletion of TWIST had been found, the FGFR3 P250R mutation was in some cases detected. This mutation has specifically been linked to Muenke syndrome that is characterized by unior bicoronal synostosis and slight facial dysmorphology. However, a Saethre-Chotzen like phenotype can also result from this mutation. Because of the possible overlap of Saethre-Chotzen with Muenke syndrome, these syndromes were studied in order to provide clinical criteria that discriminate between the two (chapter 4). Many phenotypic features occur in both syndromes. In addition, although unicoronal synostosis occurs slightly more frequently in Muenke syndrome, unicoronal and bicoronal synostosis are seen in both syndromes. The discrimination between Saethre-Chotzen and Muenke is often not made easily and the associated genes, TWIST and FGFR3, respectively, are simultaneously tested for pathogenic mutations. Discrimination between the genetic defects involved in each of these syndromes is important since different genetic defects have different physical and mental outcomes.