Article

Polymorphisms in the MBL2 promoter correlated with risk of HIV-1 vertical transmission and AIDS progression

Genetic Service, IRCCS Burlo Garofolo and Chair of Genetics, University of Trieste, Via dell'Istria 65/1, 34137 Trieste, Italy.
Genes and Immunity (Impact Factor: 3.79). 07/2000; 1(5):346-8. DOI: 10.1038/sj.gene.6363685
Source: PubMed

ABSTRACT We investigated the polymorphisms of the promoter region of the MBL2 gene, which codifies for the Mannose-binding protein (MBP). The study population included 90 children with vertically acquired HIV-infection, further divided on the basis of the disease rate, 27 HIV exposed-uninfected children, and 74 healthy control subjects matched for ethnic origin to evaluate the MBP involvement in the risk of HIV-1 infection and to assess the role of the MBP promoter in AIDS progression. A region of 380 bp in the promoter of the MBL2 gene was analysed by PCR and direct sequencing of both DNA strands. We found that the polymorphism at position -550 influences the risk of HIV-infection and AIDS progression. Also a 6 bp deletion at position -328 was correlated with HIV-1 infection. This study indicates that the promoter of the MBL2 gene influences vertical transmission of HIV and the course of perinatal infection.

0 Followers
 · 
172 Views
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Polymorphism in the MBL2 gene lead to MBL deficiency, which has been shown to increase susceptibility to various bacterial, viral and parasitic infections. We assessed role of MBL deficiency in HIV-1 and schistosoma infections in Zimbabwean adults enrolled in the Mupfure Schistosomiasis and HIV Cohort (MUSH Cohort). HIV-1, S. haematobium and S. mansoni infections were determined at baseline. Plasma MBL concentration was measured by ELISA and MBL2 genotypes determined by PCR. We calculated and compared the proportions of plasma MBL deficiency, MBL2 structural variant alleles B (codon 54A>G), C (codon 57A>G), and D (codon 52T>C) as well as MBL2 promoter variants -550(H/L), -221(X/Y) and +4(P/Q) between HIV-1 and schistosoma co-infection and control groups using Chi Square test. We assessed 379 adults, 80% females, median age (IQR) 30 (17-41) years. HIV-1, S. haematobium and S. mansoni prevalence were 26%, 43% and 18% respectively in the MUSH baseline survey. Median (IQR) plasma MBL concentration was 800μg/L (192-1936μg/L). Prevalence of plasma MBL deficiency was 18% with high frequency of the C (codon 57G>A) mutant allele (20%). There was no significant difference in median plasma MBL levels between HIV negative (912μg/L) and HIV positive (688μg/L), p = 0.066. However plasma MBL levels at the assay detection limit of 20μg/L were more frequent among the HIV-1 infected (p = 0.007). S. haematobium and S. mansoni infected participants had significantly higher MBL levels than uninfected. All MBL2 variants were not associated with HIV-1 infection but promoter variants LY and LL were significantly associated with S. haematobium infection. Our data indicate high prevalence of MBL deficiency, no evidence of association between MBL deficiency and HIV-1 infection. However, lower plasma MBL levels were protective against both S. haematobium and S. mansoni infections and MBL2 promoter and variants LY and LL increased susceptibility to S. haematobium infection.
    PLoS ONE 01/2015; 10(4):e0122659. DOI:10.1371/journal.pone.0122659 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Innate recognition of virus proteins is an important component of the immune response to viral pathogens. A component of this immune recognition is the family of lectins; pattern recognition receptors (PRRs) that recognise viral pathogen-associated molecular patterns (PAMPs) including viral glycoproteins. In this review we discuss the contribution of soluble and membrane-associated PRRs to immunity against virus pathogens, and the potential role of these molecules in facilitating virus replication. These processes are illustrated with examples of viruses including human immunodeficiency virus (HIV), hepatitis C virus (HCV) and Ebola virus (EBOV). We focus on the structure, function and genetics of the well-characterised C-type lectin mannose-binding lectin, the ficolins, and the membrane-bound CD209 proteins expressed on dendritic cells. The potential for lectin-based antiviral therapies is also discussed.
    Molecules 01/2015; 20(2):2229-2271. DOI:10.3390/molecules20022229 · 2.10 Impact Factor

Full-text (2 Sources)

Download
28 Downloads
Available from
May 20, 2014