Polymorphisms in the MBL2 promoter correlated with risk of HIV-1 vertical transmission and AIDS progression.

Genetic Service, IRCCS Burlo Garofolo and Chair of Genetics, University of Trieste, Via dell'Istria 65/1, 34137 Trieste, Italy.
Genes and Immunity (Impact Factor: 3.68). 07/2000; 1(5):346-8. DOI:10.1038/sj.gene.6363685
Source: PubMed

ABSTRACT We investigated the polymorphisms of the promoter region of the MBL2 gene, which codifies for the Mannose-binding protein (MBP). The study population included 90 children with vertically acquired HIV-infection, further divided on the basis of the disease rate, 27 HIV exposed-uninfected children, and 74 healthy control subjects matched for ethnic origin to evaluate the MBP involvement in the risk of HIV-1 infection and to assess the role of the MBP promoter in AIDS progression. A region of 380 bp in the promoter of the MBL2 gene was analysed by PCR and direct sequencing of both DNA strands. We found that the polymorphism at position -550 influences the risk of HIV-infection and AIDS progression. Also a 6 bp deletion at position -328 was correlated with HIV-1 infection. This study indicates that the promoter of the MBL2 gene influences vertical transmission of HIV and the course of perinatal infection.

0 0
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Mother-to-child transmission (MTCT) is the main cause of HIV-1 infection in children worldwide. Dendritic cell-specific ICAM-3 grabbing-nonintegrin (DC-SIGN, also known as CD209) is an HIV-1 receptor that enhances its transmission to T cells and is expressed on placental macrophages. We have investigated the association between DC-SIGN genetic variants and risk of MTCT of HIV-1 among Zimbabwean infants and characterized the impact of the associated mutations on DC-SIGN expression and interaction with HIV-1. DC-SIGN promoter (p-336C and p-201A) and exon 4 (198Q and 242V) variants were all significantly associated with increased risk of intrauterine (IU) HIV-1 infection. Promoter variants decreased DC-SIGN expression both in vitro and in placental CD163(+) macrophages (Hofbauer cells) of HIV-1 unexposed infants but not of HIV-1 exposed infants. The exon 4 protein-modifying mutations increased HIV-1 capture and transmission to T cells in vitro. This study provides compelling evidence to support an important role of DC-SIGN in IU HIV-1 infection.
    PLoS ONE 01/2012; 7(7):e40706. · 3.73 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: The ageing process is very complex. Human longevity is a multifactorial trait which is determined by genetic and environmental factors. Twin and family studies imply that up to 25% of human lifespan is heritable. The longevity gene candidates have generally fallen into the following categories: inflammatory and immune-related factors, stress response elements, mediators of glucose and lipid metabolism, components of DNA repair and cellular proliferation and mitochondrial DNA haplogroups. Because of the central role of HLA molecules in the development of protective immunity and the extraordinary degree of polymorphism of HLA genes, many studies have addressed the possible impact of these genes on human longevity. Most of the data available so far demonstrated a possible role of HLA class II specificities in human longevity but definitive evidence has remained elusive. Although the data are limited and controversial, it has been hypothesized that longevity could be associated with cytokine gene polymorphisms correlating with different levels of cytokine production, thereby modulating immune responses in health and disease. Because of the essential role of cytokines in immune responses, the regulation of cytokine gene expression and their polymorphic nature, the genetic variations of these loci with functional significance could be appropriate immunogenetic candidate markers implicated in the mechanism of successful ageing and longevity. In addition, several other genes such as Toll-like receptor genes, Cycloxygenases (COX)/Lipoxygenases (LOX), CCR5, NK receptor genes and MBL2 have been assessed as a possible biomarkers associated with ageing. This review will summarize the data on the role of these immune genes in human longevity.
    International Journal of Immunogenetics 07/2011; 38(5):373-81. · 1.36 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Human immunodeficiency virus (HIV) mother-to-child transmission is a complex event, depending upon environmental factors and is affected by host genetic factors from mother and child, as well as viral genetic elements. The integration of multiple parameters (CD4 cell count, virus load, HIV subtype, and host genetic markers) could account for the susceptibility to HIV infection, a multifactorial trait. The goal of this manuscript is to analyze the immunogenetic factors associated to HIV mother-to-child transmission, trying to unravel the genetic puzzle of HIV mother-to-child transmission and considering the experience in this topic of two research groups from Brazil and Argentina.
    Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases 03/2013; · 3.22 Impact Factor

Full-text (2 Sources)

Available from
Mar 10, 2014