Acute pulmonary effects of ultrafine particles in rats and mice

Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, 575 Elmwood Avenue, Box EHSC, Rochester NY 14642, USA.
Research report (Health Effects Institute) 08/2000; 96(96):5-74; disc. 75-86.
Source: PubMed

ABSTRACT Ambient fine particles consist of ultrafine particles (< 100 nm) and accumulation-mode particles (approximately 100 to 1,000 nm). Our hypothesis that ultrafine particles can have adverse effects in humans is based on results of our earlier studies with particles of both sizes and on the finding that urban ultrafine particles can reach mass concentrations of 40 to 50 micrograms/m3, equivalent to number concentrations of 3 to 4 x 10(5) particles/cm3. The objectives of the exploratory studies reported here were to (1) evaluate pulmonary effects induced in rats and mice by ultrafine particles of known high toxicity (although not occurring in the ambient atmosphere) in order to obtain information on principles of ultrafine particle toxicology; (2) characterize the generation and coagulation behavior of ultrafine particles that are relevant for urban air; (3) study the influence of animals' age and disease status; and (4) evaluate copollutants as modifying factors. We used ultrafine Teflon (polytetrafluoroethylene [PTFE]*) fumes (count median diameter [CMD] approximately 18 nm) generated by heating Teflon in a tube furnace to 486 degrees C to evaluate principles of ultrafine particle toxicity that might be helpful in understanding potential effects of ambient ultrafine particles. Teflon fumes at ultrafine particle concentrations of approximately 50 micrograms/m3 are extremely toxic to rats when inhaled for only 15 minutes. We found that neither the ultrafine Teflon particles alone when generated in argon nor the Teflon fume gas-phase constituents when generated in air were toxic after 25 minutes of exposure. Only the combination of both phases when generated in air caused high toxicity, suggesting the existence of either radicals on the particle surface or a carrier mechanism of the ultrafine particles for adsorbed gas-phase compounds. We also found rapid translocation of the ultrafine Teflon particles across the epithelium after their deposition, which appears to be an important difference from the behavior of larger particles. Furthermore, the pulmonary toxicity of the ultrafine Teflon fumes could be prevented by adapting the animals with short 5-minute exposures on 3 days prior to a 15-minute exposure. This shows the importance of preexposure history in susceptibility to acute effects of ultrafine particles. Aging of the fresh Teflon fumes for 3.5 minutes led to a predicted coagulation resulting in particles greater than 100 nm that no longer caused toxicity in exposed animals. This result is consistent with greater toxicity of ultrafine particles compared with accumulation-mode particles. When establishing dose-response relationships for intratracheally instilled titanium dioxide (TiO2) particles of the size of the urban ultrafine particles (20 nm) and of the urban accumulation-mode particles (250 nm), we observed significantly greater pulmonary inflammatory response to ultrafine TiO2 in rats and mice. The greater toxicity of the ultrafine TiO2 particles correlated well with their greater surface area per mass. Ultrafine particles of carbon, platinum, iron, iron oxide, vanadium, and vanadium oxide were generated by electric spark discharge and characterized to obtain particles of environmental relevance for study. The CMD of the ultrafine carbon particles was approximately 26 nm, and that of the metal particles was 15 to 20 nm, with geometric standard deviations (GSDs) of 1.4 to 1.7. For ultrafine carbon particles, approximately 100 micrograms/m3 is equivalent to 12 x 10(6) particles/cm3. Homogeneous coagulation of these ultrafine particles in an animal exposure chamber occurred rapidly at 1 x 10(7) particles/cm3, so that particles quickly grew to sizes greater than 100 nm. Thus, controlled aging of ultrafine carbon particles allowed the generation of accumulation-mode carbon particles (due to coagulation growth) for use in comparative toxicity studies. We also developed a technique to generate ultrafine particles consisting of the stable isotope 13C by using 13C-graphite electrodes made in our laboratory from amorphous 13C powder. These particles are particularly useful tools for determining deposition efficiencies of ultrafine carbon particles in the respiratory tracts of laboratory animals and the translocation of particles to extrapulmonary sites. For compromised animals, we used acute and chronic pulmonary emphysema; a low-dose endotoxin inhalation aimed at priming target cells in the lung was also developed. Other modifying factors were age and copollutant (ozone) exposure. Exposure concentrations of the generated ultrafine particles for acute rodent inhalation studies were selected on the basis of lung doses predicted to occur in people inhaling approximately 50 micrograms/m3 urban ultrafine particles. Concentrations that achieved the same predicted lung burden per unit alveolar surface were used in rodents. (ABSTRACT TRUNCATED)

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigated gene expression, protein synthesis, and particle retention in mouse lungs following intratracheal instillation of varying doses of nano-sized titanium dioxide (nano-TiO2). Female C57BL/6 mice were exposed to rutile nano-TiO2 via single intratracheal instillations of 18, 54, and 162 μg/mouse. Mice were sampled 1, 3, and 28 days post-exposure. The deposition of nano-TiO2 in the lungs was assessed using nanoscale hyperspectral microscopy. Biological responses in the pulmonary system were analysed using DNA microarrays, pathway-specific real-time RT-PCR (qPCR), gene-specific qPCR arrays, and tissue protein ELISA. Hyperspectral mapping showed dose-dependent retention of nano-TiO2 in the lungs up to 28 days post-instillation. DNA microarray analysis revealed approximately 3000 genes that were altered across all treatment groups (±1.3 fold; p < 0.1). Several inflammatory mediators changed in a dose- and time-dependent manner at both the mRNA and protein level. Although no influx of neutrophils was detected at the low dose, changes in the expression of several genes and proteins associated with inflammation were observed. Resolving inflammation at the medium dose, and lack of neutrophil influx in the lung fluid at the low dose, was associated with down-regulation of genes involved in ion homeostasis and muscle regulation. Our gene expression results imply that retention of nano-TiO2 in the absence of inflammation over time may potentially perturb calcium and ion homeostasis, and affect smooth muscle activities.
    Toxicology and Applied Pharmacology 04/2013; 269(3). DOI:10.1016/j.taap.2013.03.018 · 3.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is well accepted that airborne particles can induce adverse health effects dependent on the source, composition, morphology and size. Studies indicate that ultrafine particles (diameter < 100 nm) are of specific importance. Therefore, upwind and downwind field measurements of particle number size distributions (14–750 nm), nitrogen oxides, PM10 and PM1 mass concentrations were performed to derive information on sources of those types of particles from motorways. The measurement stations were located at a motorway in a rural area with flat terrain and unhindered air flow situation. The mean particle number concentration was 20,900 #/cm3 downwind and 3,400 #/cm3 upwind of the motorway. The highest total particle number concentration at the downwind station was 141,000 #/cm3. About 90% of these particles were < 100 nm. The measured data were used to derive size-dependent emission factors (EF) using the NOx tracer method. This method is based on listed NOx EF (HBEFA, 2010). The average total particle number EF per vehicle was determined to be 3.5 × 1014 particles/km. The average particle EF was 2.1 × 1014 particles/km and 11.8 × 1014 particles/km for light duty vehicles (LDV) and heavy duty vehicles (HDV). The higher EF for HDV is mainly caused by particles with diameters below 50 nm. The comparison of EF from the literature show the importance of the particle size range investigated. Especially particles at the lower size detection limit contribute to total particle number concentrations and hence determine the EF significantly. In the EURO V directive, particle number emission limits of 6 × 1011 particles/km were set for diesel passenger cars. This value is defined for non-volatile particles > 23 nm. The EF for the given size range (> 23 nm)determined in this study were significantly higher with 1.0 × 1014 for LDV.
    Aerosol and Air Quality Research 02/2013; 13(3). DOI:10.4209/aaqr.2012.07.0187 · 2.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This report presents an exhaustive literature review on the toxicity of manufactured ZnO nanoparticles (NPs) to ecological receptors across different taxa: bacteria, algae and plants, aquatic and terrestrial invertebrates and vertebrates. Ecotoxicity studies on ZnO NPs are most abundant in bacteria, and are relatively lacking in other species. These studies suggest relative high acute toxicity of ZnO NPs (in the low mg/l levels) to environmental species, although this toxicity is highly dependent on test species, physico-chemical properties of the material, and test methods. Particle dissolution to ionic zinc and particle-induced generation of reactive oxygen species (ROS) represent the primary modes of action for ZnO NP toxicity across all species tested, and photo-induced toxicity associated with its photocatalytic property may be another important mechanism of toxicity under environmentally relevant UV radiation. Finally, current knowledge gaps within this area are briefly discussed and recommendations for future research are made.
    Environmental Pollution 09/2012; 172C:76-85. DOI:10.1016/j.envpol.2012.08.011 · 3.90 Impact Factor