Evidence of adaptive divergence in plasticity: density- and site-dependent selection on shade-avoidance responses in Impatiens capensis.

Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912, USA.
Evolution (Impact Factor: 4.66). 01/2001; 54(6):1956-68. DOI: 10.1554/0014-3820(2000)054[1956:EOADIP]2.0.CO;2
Source: PubMed

ABSTRACT We investigated the conditions under which plastic responses to density are adaptive in natural populations of Impatiens capensis and determined whether plasticity has evolved differently in different selective environments. Previous studies showed that a population that evolved in a sunny site exhibited greater plasticity in response to density than did a population that evolved in a woodland site. Using replicate inbred lines in a reciprocal transplant that included a density manipulation, we asked whether such population differentiation was consistent with the hypothesis of adaptive divergence. We hypothesized that plasticity would be more strongly favored in the sunny site than in the woodland site; consequently, we predicted that selection would be more strongly density dependent in the sunny site, favoring the phenotype that was expressed at each density. Selection on internode length and flowering date was consistent with the hypothesis of adaptive divergence in plasticity. Few costs or benefits of plasticity were detected independently from the expressed phenotype, so plasticity was selected primarily through selection on the phenotype. Correlations between phenotypes and their plasticity varied with the environment and would cause indirect selection on plasticity to be environment dependent. We showed that an appropriate plastic response even to a rare environment can greatly increase genotypic fitness when that environment is favorable. Selection on the measured characters contributed to local adaptation and fully accounted for fitness differences between populations in all treatments except the woodland site at natural density.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Environmental variation often induces shifts in functional traits, yet we know little about whether plasticity will reduce extinction risks under climate change. As climate change proceeds, phenotypic plasticity could enable species with limited dispersal capacity to persist in situ, and migrating populations of other species to establish in new sites at higher elevations or latitudes. Alternatively, climate change could induce maladaptive plasticity, reducing fitness, and potentially stalling adaptation and migration. Here, we quantified plasticity in life history, foliar morphology, and ecophysiology in Boechera stricta (Brassicaceae), a perennial forb native to the Rocky Mountains. In this region, warming winters are reducing snowpack and warming springs are advancing the timing of snow melt. We hypothesized that traits that were historically advantageous in hot and dry, low-elevation locations will be favored at higher elevation sites due to climate change. To test this hypothesis, we quantified trait variation in natural populations across an elevational gradient. We then estimated plasticity and genetic variation in common gardens at two elevations. Finally, we tested whether climatic manipulations induce plasticity, with the prediction that plants exposed to early snow removal would resemble individuals from lower elevation populations. In natural populations, foliar morphology and ecophysiology varied with elevation in the predicted directions. In the common gardens, trait plasticity was generally concordant with phenotypic clines from the natural populations. Experimental snow removal advanced flowering phenology by 7 days, which is similar in magnitude to flowering time shifts over 2-3 decades of climate change. Therefore, snow manipulations in this system can be used to predict eco-evolutionary responses to global change. Snow removal also altered foliar morphology, but in unexpected ways. Extensive plasticity could buffer against immediate fitness declines due to changing climates. © 2014 John Wiley & Sons Ltd.
    Global Change Biology 12/2014; · 8.22 Impact Factor
  • Evolutionary Ecology 11/2014; 28(6):1139-1153. · 2.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Different genotypes often exhibit opposite plastic responses in the timing of the onset of flowering with increasing plant density. In experimental studies, selection for accelerated flowering is generally found. By contrast, game theoretical studies predict that there should be selection for delayed flowering when competition increases.Combining different optimality criteria, the conditions under which accelerated or delayed flowering in response to density would be selected for are analysed with a logistic growth simulation model.To maximize seed production at the whole-stand level (simple optimization), selection should lead to accelerated flowering at high plant density, unless very short growing seasons select for similar onset of flowering at all densities. By contrast, selection of relative individual fitness will lead to delayed flowering when season length is long and/or growth rates are high.These different results give a potential explanation for the observed differences in direction of the plastic responses within and between species, including homeostasis, as a result of the effect of the variation in season length on the benefits of delayed flowering. This suggests that limited plasticity can evolve without the costs and limits that are currently thought to constrain the evolution of plasticity.
    New Phytologist 08/2014; · 6.55 Impact Factor

Full-text (2 Sources)

Available from
May 20, 2014