Article

The pyrin domain: a possible member of the death domain-fold family implicated in apoptosis and inflammation.

Current Biology (Impact Factor: 9.49). 03/2001; 11(4):R118-20. DOI: 10.1016/S0960-9822(01)00056-2
Source: PubMed
0 Bookmarks
 · 
77 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ABSTRACT Interleukin-1β (IL-1β) functions as a key regulator of inflammation and innate immunity. The protozoan parasite Toxoplasma gondii actively infects human blood monocytes and induces the production of IL-1β; however, the host and parasite factors that mediate IL-1β production during T. gondii infection are poorly understood. We report that T. gondii induces IL-1β transcript, processing/cleavage, and release from infected primary human monocytes and THP-1 cells. Treating monocytes with the caspase-1 inhibitor Ac-YVAD-CMK reduced IL-1β release, suggesting a role for the inflammasome in T. gondii-induced IL-1β production. This was confirmed by performing short hairpin RNA (shRNA) knockdown of caspase-1 and of the inflammasome adaptor protein ASC. IL-1β induction required active parasite invasion of monocytes, since heat-killed or mycalolide B-treated parasites did not induce IL-1β. Among the type I, II, and III strains of T. gondii, the type II strain induced substantially more IL-1β mRNA and protein release than did the type I and III strains. Since IL-1β transcript is known to be induced downstream of NF-κB signaling, we investigated a role for the GRA15 protein, which induces sustained NF-κB signaling in a parasite strain-specific manner. By infecting human monocytes with a GRA15-knockout type II strain and a type I strain stably expressing type II GRA15, we determined that GRA15 is responsible for IL-1β induction during T. gondii infection of human monocytes. This research defines a pathway driving human innate immunity by describing a role for the classical inflammasome components caspase-1 and ASC and the parasite GRA15 protein in T. gondii-induced IL-1β production. IMPORTANCE Monocytes are immune cells that protect against infection by increasing inflammation and antimicrobial activities in the body. Upon infection with the parasitic pathogen Toxoplasma gondii, human monocytes release interleukin-1β (IL-1β), a "master regulator" of inflammation, which amplifies immune responses. Although inflammatory responses are critical for host defense against infection, excessive inflammation can result in tissue damage and pathology. This delicate balance underscores the importance of understanding the mechanisms that regulate IL-1β during infection. We have investigated the molecular pathway by which T. gondii induces the synthesis and release of IL-1β in human monocytes. We found that specific proteins in the parasite and the host cell coordinate to induce IL-1β production. This research is significant because it contributes to a greater understanding of human innate immunity to infection and IL-1β regulation, thereby enhancing our potential to modulate inflammation in the body.
    mBio 01/2013; 4(4). · 6.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Toll-like receptors have a crucial role in the detection of microbial infection in mammals and insects. In mammals, these receptors have evolved to recognize conserved products unique to microbial metabolism. This specificity allows the Toll proteins to detect the presence of infection and to induce activation of inflammatory and antimicrobial innate immune responses. Recognition of microbial products by Toll-like receptors expressed on dendritic cells triggers functional maturation of dendritic cells and leads to initiation of antigen-specific adaptive immune responses.
    Nature reviews. Immunology 12/2001; 1(2):135-45. · 33.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Ifi-200/HIN-200 gene family encodes highly homologous human (IFI16, myeloid cell nuclear differentiation antigen, absent in melanoma 2, and IFIX) and murine proteins (Ifi202a, Ifi202b, Ifi203, Ifi204, Ifi205, and Ifi206), which are induced by type I and II interferons (IFN). These proteins have been described as regulators of cell proliferation and differentiation and, more recently, several reports have suggested their involvement in both apoptotic and inflammatory processes. The relevance of HIN-200 proteins in human disease is beginning to be clarified, and emerging experimental data indicate their role in autoimmunity. Autoimmune disorders are sustained by perpetual activation of inflammatory process and a link between autoimmunity and apoptosis has been clearly established. Moreover, the interferon system is now considered as a key player in autoimmune disorders such as systemic lupus erythemathosus, systemic sclerosis, and Sjögren's syndrome, and it is therefore conceivable to hypothesize that HIN-200 may be among the pivotal mediators of IFN activity in autoimmune disease. In particular, the participation of HIN-200 proteins in apoptosis and inflammation could support their potential role in autoimmunity.
    Autoimmunity 02/2010; 43(3):226-31. · 2.77 Impact Factor