Hens, cocks and avian sex determination. A quest for genes on Z or W?

Department of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden.
EMBO Reports (Impact Factor: 7.19). 04/2001; 2(3):192-6. DOI: 10.1093/embo-reports/kve050
Source: PubMed

ABSTRACT The sex of an individual is generally determined genetically by genes on one of the two sex chromosomes. In mammals, for instance, the presence of the male-specific Y chromosome confers maleness, whereas in Drosophila melanogaster and CAENORHABDITIS: elegans it is the number of X chromosomes that matters. For birds (males ZZ, females ZW), however, the situation remains unclear. The recent discovery that the Z-linked DMRT1 gene, which is conserved across phyla as a gene involved in sexual differentiation, is expressed early in male development suggests that it might be the number of Z chromosomes that regulate sex in birds. On the other hand, the recent identification of the first protein unique to female birds, encoded by the W-linked PKCIW gene, and the observation that it is expressed early in female gonads, suggests that the W chromosome plays a role in avian sexual differentiation. Clearly defining the roles of the DMRT1 and PKC1W genes in gonadal development, and ultimately determining whether avian sex is dependent on Z or W, will require transgenic experiments.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The molecular mechanism of sex determination in birds has long remained mysterious. Genetically male chicken embryos, which have two Z sex chromosomes, develop female gonads when the Z chromosome-linked gene DMRT1 is knocked out. This suggests that sex is determined by Z chromosome dosage.
    Current biology: CB 10/2009; 19(19):R909-10. · 10.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Considerable progress has been made in our understanding of sex determination and dosage compensation mechanisms in model organisms such as C. elegans, Drosophila and M. musculus. Strikingly, the mechanism involved in sex determination and dosage compensation are very different among these three model organisms. Birds present yet another situation where the heterogametic sex is the female. Sex determination is still poorly understood in birds and few key determinants have so far been identified. In contrast to most other species, dosage compensation of bird sex chromosomal genes appears rather ineffective. By comparing microarrays from microdissected primitive streak from single chicken embryos, we identified a large number of genes differentially expressed between male and female embryos at a very early stage (Hamburger and Hamilton stage 4), long before any sexual differentiation occurs. Most of these genes are located on the Z chromosome, which indicates that dosage compensation is ineffective in early chicken embryos. Gene ontology analyses, using an enhanced annotation tool for Affymetrix probesets of the chicken genome developed in our laboratory (called Manteia), show that among these male-biased genes found on the Z chromosome, more than 20 genes play a role in sex differentiation. These results corroborate previous studies demonstrating the rather inefficient dosage compensation for Z chromosome in birds and show that this sexual dimorphism in gene regulation is observed long before the onset of sexual differentiation. These data also suggest a potential role of non-compensated Z-linked genes in somatic sex differentiation in birds.
    BMC Genomics 01/2010; 11:13. · 4.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sex Identification of monomorphic birds, especially endangered avian species, is essential for ecological study and biodiversity conservation. In this study, two popular primer sets of 2550F/2718R and P2/P8, which were designed to amplify different fragments of chromodomain-helicase-DNA binding protein 1 (CHD1) genes mapped on both Z and W chromosomes in birds, were used to identify for the first time the sex of individuals of the endangered species crested ibis (Nipponia nippon) in a large number of samples. An improved primer set of 2467F/2530R was re-designed to be specific to crested ibis following their conserved sequences derived from the 2550F/2718R primers. PCR products of the new primers were conveniently visualized with two bands of 552 base pairs (bp) and 358 bp for females, but a single band of 552 bp for males in routine 1.8% agarose gel. Similarly, the P2/P8 primer set amplified two fragments of 398 bp and 381 bp from females but one fragment of 398 bp from males; however, a high resolution involving 10% Polyacrylamide gel had to be employed to resolve the 17 bp insertions/deletions (in/dels) present between the two amplicons in females. In addition, a microsatellite locus NnNF05 was validated to be sex-linked and shown to be effective in the sexing of crested ibis, supporting its utility in non-invasive sampling. This study provides a rapid, convenient, and reliable molecular assay for improving sex identification in the monomorphic and monogamous crested ibis, and thus facilitates the selection of breeding pairs in captive programs and reintroduction initiatives.
    ZOOLOGICAL SCIENCE 09/2013; 30(9):742-7. · 1.08 Impact Factor

Full-text (2 Sources)