Article

Extracellular matrix interacts with soluble CD95L: retention and enhancement of cytotoxicity.

Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 40 Convent Drive, Bethesda, MD 20892-3005, USA.
Nature Immunology (Impact Factor: 24.97). 05/2001; 2(4):333-7. DOI: 10.1038/86336
Source: PubMed

ABSTRACT Fas ligand (CD95L) is synthesized both on the cell surface membrane and in a soluble form. Although CD95L contributes to immune privilege in the cornea and testis, the functions of these alternatively processed proteins are not well understood. Some reports suggest that the cytotoxicity of soluble CD95L is insignificant, whereas others show potent responses in vivo, including hepatocyte apoptosis that causes liver failure. We show here that extracellular matrix proteins interact with soluble CD95L and potentiate its pro-apoptotic activity. The cytotoxicity of supernatants from CD95L-expressing cells was increased by incubation on tissue culture plates coated with these matrix proteins; this effect was mediated by trimeric soluble CD95L. With the use of immunoprecipitation, it was found that CD95L binds directly to fibronectin. In addition, immunohistochemical analysis of the cornea revealed that soluble CD95L binds primarily to extracellular matrix. The retention of soluble CD95L on extracellular matrices is likely to play an important role in the development of peripheral tolerance in immune-privileged sites.

0 Followers
 · 
80 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rheumatoid Arthritis (RA) is a chronic inflammatory disease affecting synovial joints. Tumor necrosis factor (TNF) α is a key component of RA pathogenesis and blocking this cytokine is the most common strategy to treat the disease. Though TNFα blockers are very efficient, one third of the RA patients are unresponsive or present side effects. Therefore, the development of novel therapeutic approaches is required. RA pathogenesis is characterized by the hyperplasia of the synovium, closely associated to the pseudo-tumoral expansion of fibroblast-like synoviocytes (FLS), which invade and destroy the joint structure. Hence, depletion of RA FLS has been proposed as an alternative therapeutic strategy. The TNF family member Fas ligand (FasL) was reported to trigger apoptosis in FLS of arthritic joints by binding to its receptor Fas and therefore suggested as a promising candidate for targeting the hyperplastic synovial tissue. However, this cytokine is pleiotropic and recent data from the literature indicate that Fas activation might have a disease-promoting role in RA by promoting cell proliferation. Therefore, a FasL-based therapy for RA requires careful evaluation before being applied. In this review we aim to overview what is known about the apoptotic and non-apoptotic effects of Fas/FasL system and discuss its relevance in RA. Copyright © 2014 Elsevier Ltd. All rights reserved.
    Cytokine 12/2014; DOI:10.1016/j.cyto.2014.10.004 · 2.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD95 (Fas/APO-1), when bound by its cognate ligand CD95L, induces cells to die by apoptosis. We now show that elimination of CD95 or CD95L results in a form of cell death that is independent of caspase-8, RIPK1/MLKL, and p53, is not inhibited by Bcl-xL expression, and preferentially affects cancer cells. All tumors that formed in mouse models of low-grade serous ovarian cancer or chemically induced liver cancer with tissue-specific deletion of CD95 still expressed CD95, suggesting that cancer cannot form in the absence of CD95. Death induced by CD95R/L elimination (DICE) is characterized by an increase in cell size, production of mitochondrial ROS, and DNA damage. It resembles a necrotic form of mitotic catastrophe. No single drug was found to completely block this form of cell death, and it could also not be blocked by the knockdown of a single gene, making it a promising way to kill cancer cells.
    Cell Reports 03/2014; DOI:10.1016/j.celrep.2014.02.035 · 7.21 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: FasL is the most extensively studied apoptosis ligand. In 2000, tilapia FasL was identified using anti-human FasL monoclonal antibody by Evans's research group. Recently, a tilapia FasL-like protein of smaller molecule weight was predicted in Genbank (XM_003445156.2). Based on several clues drawn from previous studies, we cast doubt on the authenticity of the formerly identified tilapia FasL. Conversely, using reverse transcription polymerase chain reaction (RT-PCR), the existence of the predicted FasL-like was verified at the mRNA level. Through multiple alignments, this FasL-like protein was found to be highly similar to the FasL of the Japanese flounder. Moreover, we artificially expressed the functional region of the predicted protein and later confirmed its apoptosis-inducing activity using a methyl thiazolyl tetrazolium (MTT) assay, Annexin-V / Propidium iodide (PI) double staining, and DNA fragment detection. Supported by these evidences, we suggest that the predicted protein is the authentic tilapia FasL. To advance this research further, tilapia FasL mRNA and its protein across different tissues were quantified. High expression levels were identified in the tilapia immune system and sites where active cell turnover conservatively occurs. In this regard, FasL may assume an active role in the immune system and cell homeostasis maintenance in tilapia, similar to that shown in other species. In addition, because the distribution pattern of FasL mRNA did not synchronize with that of the protein, post-transcriptional expression regulation is suggested. Such regulation may be dominated by potential adenylate- and uridylate-rich elements (AREs) featuring AUUUA repeats found in the 3' untranslated region (UTR) of tilapia FasL mRNA.
    Developmental & Comparative Immunology 06/2014; DOI:10.1016/j.dci.2014.06.003 · 3.71 Impact Factor

Kazunori Aoki