First evidence for gene replacement in Leptospira spp. Inactivation of L. biflexa flaB results in non-motile mutants deficient in endoflagella.

Unité de Bactériologie Moléculaire et Médicale, Institut Pasteur, 28 rue du docteur Roux, 75724 Paris Cedex 15, France.
Molecular Microbiology (Impact Factor: 5.03). 05/2001; 40(1):189-99. DOI: 10.1046/j.1365-2958.2001.02374.x
Source: PubMed

ABSTRACT Leptospira spp. offer many advantages as model bacteria for the study of spirochaetes. However, homologous recombination between introduced DNA and the corresponding chromosomal loci has never been demonstrated. A unique feature of spirochaetes is the presence of endoflagella between the outer membrane sheath and the cell cylinder. We chose the flaB flagellin gene, constituting the flagellar core, as a target for gene inactivation in the saprophyte Leptospira biflexa. The amino acid sequence of the FlaB protein of L. biflexa was most similar to those of spirochaetes Brachyspira hyodysenteriae (agent of swine dysentery), Leptospira interrogans (agent of leptospirosis) and Treponema pallidum (agent of syphilis). A suicide vector containing the L. biflexa flaB gene disrupted by a kanamycin marker was UV irradiated or alkali denatured before electroporation. This methodology allowed the selection of many kanamycin-resistant colonies resulting from single and double cross-over events at the flaB locus. The double recombinant mutants are non-motile, as visualized in both liquid and semi-solid media. In addition, a flaB mutant selected for further analysis was shown to be deficient in endoflagella by electron microscopy. However, most of the transformants had resulted from a single homologous recombination event, giving rise to the integration of the suicide vector. We evaluated the effect of the sacB and rpsL genes in L. biflexa as potential counterselectable markers for allelic exchange, and then used the rpsL system for the positive selection of flaB double recombinants in a streptomycin-resistant strain. Like the flaB mutant studied above, the Strr double cross-over mutant was non-motile and deficient in endoflagella. Our results demonstrate that FlaB is involved in flagella assembly and motility. They also show the feasibility of performing allelic replacement in Leptospira spp. by homologous recombination.

Download full-text


Available from: Audrey Brenot, Jul 01, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Leptospires exist as saprophytic organisms that are aquatic or as pathogens that are able to survive in water. Leptospirosis is transmitted to humans through environmental surface waters contaminated by the urine of mammals, usually rodents, which are chronically infected by pathogenic strains. The ecology of Leptospira spp. prompted us to evaluate if these spirochaetes were able to form biofilms. This study investigated the characteristics of biofilm development by both saprophytic and pathogenic Leptospira species using microscopic examinations and a polystyrene plate model. Biofilms were formed preferentially on glass and polystyrene surfaces. Electron microscopic images showed cells embedded in an extracellular matrix. The formation of such a biofilm is consistent with the life of saprophytic strains in water and may help pathogenic strains to survive in environmental habitats and to colonize the host.
    Microbiology 06/2008; 154(Pt 5):1309-17. DOI:10.1099/mic.0.2007/014746-0 · 2.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The recent discoveries of prokaryotic homologs of all three major eukaryotic cytoskeletal proteins (actin, tubulin, intermediate filaments) have spurred a resurgence of activity in the field of bacterial morphology. In spirochetes, however, it has long been known that the flagellar filaments act as a cytoskeletal protein structure, contributing to their shape and conferring motility on this unique phylum of bacteria. Therefore, revisiting the spirochete cytoskeleton may lead to new paradigms for exploring general features of prokaryotic morphology. This review discusses the role that the periplasmic flagella in spirochetes play in maintaining shape and producing motility. We focus on four species of spirochetes: Borrelia burgdorferi, Treponema denticola, Treponema phagedenis and Leptonema (formerly Leptospira) illini. In spirochetes, the flagella reside in the periplasmic space. Rotation of the flagella in the above species by a flagellar motor induces changes in the cell morphology that drives motility. Mutants that do not produce flagella have a markedly different shape than wild-type cells.
    Journal of Molecular Microbiology and Biotechnology 02/2006; 11(3-5):221-7. DOI:10.1159/000094056 · 1.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There are two major pathways for methionine biosynthesis: the enterobacterial type transsulfuration pathway and the sulfhydrylation pathway as previously identified in the spirochete Leptospira meyeri. Sequence analysis of the L. meyeri metYX locus allows the identification of a third gene, called metW, which encodes a protein exhibiting similarities with homologs in many organisms belonging to the alpha-, beta-, and gamma-subdivisions of proteobacteria. The metW, metX and metY genes of L. meyeri were disrupted by a resistance cassette by homologous recombination. While the L. meyeri metX mutant shows methionine auxotrophy, the metY mutant (as well as the metW and metYmetW mutants) conserves methionine prototrophy, suggesting the presence of additional route(s) which may bypass the direct sulfhydrylation pathway. In addition, a L. interrogans gene, called metZ, was found to complement an Escherichia coli metB mutant, further suggesting that the transsulfuration pathway is also present in Leptospira spp.
    FEMS Microbiology Letters 09/2003; 225(2):257-62. DOI:10.1016/S0378-1097(03)00529-9 · 2.72 Impact Factor