Article

p14ARF deletion and methylation in genetic pathways to glioblastomas.

International Agency for Research on Cancer, Lyon, France.
Brain Pathology (Impact Factor: 4.74). 05/2001; 11(2):159-68.
Source: PubMed

ABSTRACT The CDKN2A locus on chromosome 9p21 contains the p14ARF and p16INK4a genes, and is frequently deleted in human neoplasms, including brain tumors. In this study, we screened 34 primary (de novo) glioblastomas and 16 secondary glioblastomas that had progressed from low-grade diffuse astrocytomas for alterations of the p14ARF and p16INK4a genes, including homozygous deletion by differential PCR, promoter hypermethylation by methylation-specific PCR, and protein expression by immunohistochemistry. A total of 29 glioblastomas (58%) had a p14ARF homozygous deletion or methylation, and 17 (34%) showed p16INK4a homozygous deletion or methylation. Thirteen glioblastomas showed both p14ARF and p16INK4a homozygous deletion, while nine showed only a p14ARF deletion. Immunohistochemistry revealed loss of p14ARF expression in the majority of glioblastomas (38/50, 76%), and this correlated with the gene status, i.e. homozygous deletion or promoter hypermethylation. There was no significant difference in the overall frequency of p14ARF and p16INK4a alterations between primary and secondary glioblastomas. The analysis of multiple biopsies from the same patients revealed hypermethylation of p14ARF (5/15 cases) and p16INK4a (1/15 cases) already at the stage of low-grade diffuse astrocytoma but consistent absence of homozygous deletions. These results suggest that aberrant p14ARF expression due to homozygous deletion or promoter hypermethylation is associated with the evolution of both primary and secondary glioblastomas, and that p14ARF promoter methylation is an early event in subset of astrocytomas that undergo malignant progression to secondary glioblastoma.

0 Bookmarks
 · 
104 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: One of the most important pathways which are frequently affected in colorectal cancer is p53/ (MDM2)/p14ARF pathway. We aim to determine the methylation pattern of p14/ARF in relation to mutation of p53. This correlation was studied to investigate whether their alterations could be considered as a predictor factor of prognosis in colorectal cancer and whether it can be useful in early-stage diagnosis. Statistical analyses show that p14/ARF hypermethylation was correlated with rectum location (p = 0.004), primary TNM stage (p = 0.016), and advanced Astler-Coller stage (p = 0.024). The RT-PCR that revel 31 % of patients did not express p14/ARF mRNA or at very low level. A high concordance between CpG hypermethylation and the low levels (p < 0.005) was shown. In addition, our analyses demonstrate that patients with mutation in the p53 gene have a lack of the protein expression (p < 0.005). This category with negative expression of p53 had a shorter survival rate (p < 0.005). On the one hand, MSP pattern of p14/ARF were correlated with a lack of p53 expression (p = 0.007). We found that p53/p14ARF pathway was frequently deregulated among our patients. In our study, we demonstrate that hypermethylation of p14/ARF occurs early during CRC tumorogenesis. However, we did not find correlation between p14/ARF and survival. These results suggest that p14/ARF methylation pattern may constitute a predictor factor of CRC in early stage but it could not be considered as a prognostic factor. On the other hand and because of the reversibility of the methylation mechanism, it may be appropriate to target the demethylation of p14/ARF to develop new drogues for CRC.
    Tumor Biology 09/2013; · 2.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Next generation sequencing has become a powerful tool in dissecting and identifying mutations and genomic structural variants that accompany tumourigenesis. Sequence analysis of glioblastoma multiforme (GBM) illustrates the ability to rapidly identify mutations that may affect phenotype. Approximately 50% of human GBMs overexpress epidermal growth factor receptor (EGFR) which renders the EGFR protein a compelling therapeutic target. In brain tumours, attempts to target EGFR as a cancer therapeutic, however, have achieved little or no benefit. The mechanisms that drive therapeutic resistance to EGFR inhibitors in brain tumours are not well defined, and drug resistance contributes to the deadly and aggressive nature of the disease. Whole genome sequencing of four primary GBMs revealed multiple pathways by which EGFR protein abundance becomes deregulated in these tumours and will guide the development of new strategies for treating EGFR overexpressing tumours. Each of the four tumours displayed a different mechanism leading to increased EGFR protein levels. One mechanism is mediated by gene amplification and tandem duplication of the kinase domain. A second involves an intragenic deletion that generates a constitutively active form of the protein. A third combines the loss of a gene which encodes a protein that regulates EGFR abundance as well as an miRNA that modulates EGFR expression. A fourth mechanism entails loss of an ubiquitin ligase docking site in the C-terminal part of the protein whose absence inhibits turnover of the receptor.
    Mutagenesis 08/2014; · 3.50 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Since its discovery close to twenty years ago, the ARF tumor suppressor has played a pivotal role in the field of cancer biology. Elucidating ARF’s basal physiological function in the cell has been the focal interest of numerous laboratories throughout the world for many years. Our current understanding of ARF is constantly evolving to include novel frameworks for conceptualizing the regulation of this critical tumor suppressor. As a result of this complexity, there is great need to broaden our understanding of the intricacies governing the biology of the ARF tumor suppressor. The ARF tumor suppressor is a key sensor of signals that instruct a cell to grow and proliferate and is appropriately localized in nucleoli to limit these processes. This article is part of a Special Issue entitled: Role of the Nucleolus in Human Disease.
    Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 01/2014; · 4.91 Impact Factor