Regulation and Localization of the Bloom Syndrome Protein in Response to DNA Damage

Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA..
The Journal of Cell Biology (Impact Factor: 9.69). 05/2001; 153(2):367-80.
Source: PubMed

ABSTRACT Bloom syndrome (BS) is an autosomal recessive disorder characterized by a high incidence of cancer and genomic instability. BLM, the protein defective in BS, is a RecQ-like helicase, presumed to function in DNA replication, recombination, or repair. BLM localizes to promyelocytic leukemia protein (PML) nuclear bodies and is expressed during late S and G2. We show, in normal human cells, that the recombination/repair proteins hRAD51 and replication protein (RP)-A assembled with BLM into a fraction of PML bodies during late S/G2. Biochemical experiments suggested that BLM resides in a nuclear matrix-bound complex in which association with hRAD51 may be direct. DNA-damaging agents that cause double strand breaks and a G2 delay induced BLM by a p53- and ataxia-telangiectasia mutated independent mechanism. This induction depended on the G2 delay, because it failed to occur when G2 was prevented or bypassed. It coincided with the appearance of foci containing BLM, PML, hRAD51 and RP-A, which resembled ionizing radiation-induced foci. After radiation, foci containing BLM and PML formed at sites of single-stranded DNA and presumptive repair in normal cells, but not in cells with defective PML. Our findings suggest that BLM is part of a dynamic nuclear matrix-based complex that requires PML and functions during G2 in undamaged cells and recombinational repair after DNA damage.

Download full-text


Available from: Oliver Bischof, Jul 06, 2015
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Limiting the levels of homologous recombination (HR) that occur at sites of DNA damage is a major role of BLM helicase. However, very little is known about the mechanisms dictating its relocalization to these sites. Here, we demonstrate that the ubiquitin/SUMO-dependent DNA damage response (UbS-DDR), controlled by the E3 ligases RNF8/RNF168, triggers BLM recruitment to sites of replication fork stalling via ubiquitylation in the N-terminal region of BLM and subsequent BLM binding to the ubiquitin-interacting motifs of RAP80. Furthermore, we show that this mechanism of BLM relocalization is essential for BLM's ability to suppress excessive/uncontrolled HR at stalled replication forks. Unexpectedly, we also uncovered a requirement for RNF8-dependent ubiquitylation of BLM and PML for maintaining the integrity of PML-associated nuclear bodies and as a consequence the localization of BLM to these structures. Lastly, we identified a novel role for RAP80 in preventing proteasomal degradation of BLM in unstressed cells. Taken together, these data highlight an important biochemical link between the UbS-DDR and BLM-dependent pathways involved in maintaining genome stability.
    The EMBO Journal 05/2013; 32(12). DOI:10.1038/emboj.2013.117 · 10.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The HRDC (helicase and RNase D C-terminal) domain at the C-terminal of WRNp (Werner protein) (1150-1229 amino acids) and BLMp (Bloom protein) (1212-1292 amino acids) recognize laser microirradiation-induced DNA dsbs (double-strand breaks). However, their role in the recognition of DNA damage other than dsbs has not been reported. In this work, we show that HRDC domain of both the proteins can be recruited to the DNA damage induced by MMS (methyl methanesulfonate) and MMC (methyl mitomycin C). GFP (green fluorescent protein)-tagged HRDC domain produces distinct foci-like respective wild-types after DNA damage induced by the said agents and co-localize with γ-H2AX. However, in time course experiment, we observed that the foci of HRDC domain exist after 24 h of removal of the damaging agents, while the foci of full-length protein disappear completely. This indicates that the repair events are not completed by the presence of protein corresponding to only the HRDC domain. Consequently, cells overexpressing the HRDC domain fail to survive after DNA damage, as determined by MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide] assay. Moreover, 24 h after removal of damaging agents, the extent of DNA damage is greater in cells overexpressing HRDC domain compared with corresponding wild-types, as observed by comet assay. Thus, our observations suggest that HRDC domain of both WRN and BLM can also recognize different types of DNA damages, but for the successful repair they fail to respond to subsequent repair events.
    Cell Biology International 06/2012; 36(10):873-81. DOI:10.1042/CBI20110510 · 1.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The PML protein and PML nuclear bodies (PML-NB) are implicated in multiple cellular functions relevant to tumor suppression, including DNA damage response. In most cases of acute promyelocytic leukemia, the PML and retinoic acid receptor alpha (RARA) genes are translocated, resulting in expression of oncogenic PML-RARα fusion proteins. PML-NB fail to form normally, and promyelocytes remain in an undifferentiated, abnormally proliferative state. We examined the involvement of PML protein and PML-NB in homologous recombinational repair (HRR) of chromosomal DNA double-strand breaks. Transient overexpression of wild-type PML protein isoforms produced hugely enlarged or aggregated PML-NB and reduced HRR by ~2-fold, suggesting that HRR depends to some extent upon normal PML-NB structure. Knockdown of PML by RNA interference sharply attenuated formation of PML-NB and reduced HRR by up to 20-fold. However, PML-knockdown cells showed apparently normal induction of H2AX phosphorylation and RAD51 foci after DNA damage by ionizing radiation. These findings indicate that early steps in HRR, including recognition of DNA double-strand breaks, initial processing of ends, and assembly of single-stranded DNA/RAD51 nucleoprotein filaments, do not depend upon PML-NB. The HRR deficit in PML-depleted cells thus reflects inhibition of later steps in the repair pathway. Expression of PML-RARα fusion proteins disrupted PML-NB structure and reduced HRR by up to 10-fold, raising the possibility that defective HRR and resulting genomic instability may figure in the pathogenesis, progression and relapse of acute promyelocytic leukemia.
    Journal of Cellular Biochemistry 01/2011; 113(5):1787-99. DOI:10.1002/jcb.24050 · 3.37 Impact Factor