Article

Regulation and Localization of the Bloom Syndrome Protein in Response to DNA Damage

Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA..
The Journal of Cell Biology (Impact Factor: 9.69). 05/2001; 153(2):367-80.
Source: PubMed

ABSTRACT Bloom syndrome (BS) is an autosomal recessive disorder characterized by a high incidence of cancer and genomic instability. BLM, the protein defective in BS, is a RecQ-like helicase, presumed to function in DNA replication, recombination, or repair. BLM localizes to promyelocytic leukemia protein (PML) nuclear bodies and is expressed during late S and G2. We show, in normal human cells, that the recombination/repair proteins hRAD51 and replication protein (RP)-A assembled with BLM into a fraction of PML bodies during late S/G2. Biochemical experiments suggested that BLM resides in a nuclear matrix-bound complex in which association with hRAD51 may be direct. DNA-damaging agents that cause double strand breaks and a G2 delay induced BLM by a p53- and ataxia-telangiectasia mutated independent mechanism. This induction depended on the G2 delay, because it failed to occur when G2 was prevented or bypassed. It coincided with the appearance of foci containing BLM, PML, hRAD51 and RP-A, which resembled ionizing radiation-induced foci. After radiation, foci containing BLM and PML formed at sites of single-stranded DNA and presumptive repair in normal cells, but not in cells with defective PML. Our findings suggest that BLM is part of a dynamic nuclear matrix-based complex that requires PML and functions during G2 in undamaged cells and recombinational repair after DNA damage.

Full-text

Available from: Oliver Bischof, Jun 03, 2015
1 Follower
 · 
140 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: RecQ-like helicases are a highly conserved protein family that functions during DNA repair and, when mutated in humans, is associated with cancer and/or premature aging syndromes. The budding yeast RecQ-like helicase Sgs1 has important functions in double-strand break (DSB) repair of exogenously induced breaks, as well as those that arise endogenously, for example during DNA replication. To further investigate Sgs1's regulation, we analyzed the subcellular localization of a fluorescent fusion of Sgs1 upon DNA damage. Consistent with a role in DSB repair, Sgs1 recruitment into nuclear foci in asynchronous cultures increases after ionizing radiation (IR) and after exposure to the alkylating agent methyl methanesulfonate (MMS). Yet, despite the importance of Sgs1 in replicative damage repair and in contrast to its elevated protein levels during S-phase, we find that the number of Sgs1 foci decreases upon nucleotide pool depletion by hydroxyurea (HU) treatment and that this negative regulation depends on the intra S-phase checkpoint kinase Mec1. Importantly, we identify the SUMO-targeted ubiquitin ligase (STUbL) complex Slx5-Slx8 as a negative regulator of Sgs1 foci, both spontaneously and upon replicative damage. Slx5-Slx8 regulation of Sgs1 foci is likely conserved in eukaryotes, since expression of the mammalian Slx5-Slx8 functional homologue, RNF4, restores Sgs1 focus number in slx8 cells and furthermore, knockdown of RNF4 leads to more BLM foci in U-2 OS cells. Our results point to a model where RecQ-like helicase subcellular localization is regulated by STUbLs in response to DNA damage, presumably to prevent illegitimate recombination events.
    DNA Repair 12/2014; 26. DOI:10.1016/j.dnarep.2014.12.004 · 3.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: BLM has key roles in homologous recombination repair, telomere maintenance and DNA replication. Germ-line mutations in the BLM gene causes Bloom’s syndrome, a rare disorder characterised by premature aging and predisposition to multiple cancers including breast cancer. The clinicopathological significance of BLM in sporadic breast cancers is unknown. We investigated BLM mRNA expression in the Molecular Taxonomy of Breast Cancer International Consortium cohort (n=1950) and validated in an external dataset of 2413 tumours. BLM protein level was evaluated in the Nottingham Tenovus series comprising 1650 breast tumours. BLM mRNA overexpression was significantly associated with high histological grade, larger tumour size, ER negative, PgR negative and triple negative phenotypes (ps<0.0001). BLM mRNA overexpression was also linked to aggressive molecular phenotypes including PAM50.Her2 (p<0.0001), PAM50.Basal (p<0.0001) and PAM50.LumB (p<0.0001) and Genufu subtype (ER+/Her2-/High proliferation) (p<0.0001). PAM50.LumA tumours and Genufu subtype (ER+/Her2-/low proliferation) were more likely to express low levels of BLM mRNA (ps<0.0001). Integrative molecular clusters (intClust) intClust.1 (p<0.0001), intClust.5 (p<0.0001), intClust.9 (p<0.0001) and intClust.10 (p<0.0001) were also more likely in tumours with high BLM mRNA expression. BLM mRNA overexpression was associated with poor breast cancer specific survival (BCSS) (ps<0.000001). At the protein level, altered sub-cellular localisation with high cytoplasmic BLM and low nuclear BLM was linked to aggressive phenotypes. In multivariate analysis, BLM mRNA and BLM protein levels independently influenced BCSS (p=0.03). This is the first and the largest study to provide evidence that BLM is a promising biomarker in breast cancer. Most Senior and Corresponding Author: Dr Srinivasan Madhusudan
    Molecular Cancer Therapeutics 02/2015; DOI:10.1158/1535-7163.MCT-14-0939 · 6.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously demonstrated that acquisition of intricate patterns of activating (H3K4me3, H3K9/K14ac) and repressive (H3K27me3) histone modifications is a hallmark of KSHV latency establishment. The precise molecular mechanisms that shape the latent histone modification landscape, however, remain unknown. Promyelocytic leukemia nuclear bodies (PML-NB), also called nuclear domain 10 (ND10), have emerged as mediators of innate immune responses that can limit viral gene expression via chromatin based mechanisms. Consequently, although ND10 functions thus far have been almost exclusively investigated in models of productive herpesvirus infection, it has been proposed that they also may contribute to the establishment of viral latency. Here, we report the first systematic study of the role of ND10 during KSHV latency establishment, and link alterations in the subcellular distribution of ND10 components to a temporal analysis of histone modification acquisition and host cell gene expression during the early infection phase. Our study demonstrates that KSHV infection results in a transient interferon response that leads to induction of the ND10 components PML and Sp100, but that repression by ND10 bodies is unlikely to contribute to KSHV latency establishment. Instead, we uncover an unexpected role for soluble Sp100 protein, which is efficiently and permanently relocalized from nucleoplasmic and chromatin-associated fractions into the insoluble matrix. We show that LANA expression is sufficient to induce Sp100 relocalization, likely via mediating SUMOylation of Sp100. Furthermore, we demonstrate that depletion of soluble Sp100 occurs precisely when repressive H3K27me3 marks first accumulate on viral genomes, and that knock-down of Sp100 (but not PML or Daxx) facilitates H3K27me3 acquisition. Collectively, our data support a model in which non-ND10 resident Sp100 acts as a negative regulator of polycomb repressive complex-2 (PRC2) recruitment, and suggest that KSHV may actively escape ND10 silencing mechanisms to promote establishment of latent chromatin.
    PLoS Pathogens 07/2014; 10(7):e1004274. DOI:10.1371/journal.ppat.1004274 · 8.14 Impact Factor