Article

# Reducing nonideal to ideal coupling in random matrix description of chaotic scattering: application to the time-delay problem.

Fachbereich Physik, Universität-GH Essen, 45117 Essen, Germany.

Physical Review E (Impact Factor: 2.31). 04/2001; 63(3 Pt 2):035202. DOI: 10.1103/PhysRevE.63.035202 Source: PubMed

- [Show abstract] [Hide abstract]

**ABSTRACT:**We develop a method to compute the moments of the eigenvalue densities of matrices in the Gaussian, Laguerre and Jacobi ensembles for all the symmetry classes beta = 1,2, 4 and finite matrix dimension n. The moments of the Jacobi ensembles have a physical interpretation as the moments of the transmission eigenvalues of an electron through a quantum dot with chaotic dynamics. For the Laguerre ensemble we also evaluate the finite n negative moments. Physically, they correspond to the moments of the proper delay times, which are the eigenvalues of the Wigner-Smith matrix. Our formulae are well suited to an asymptotic analysis as n -> infinity.Journal of Mathematical Physics 03/2011; · 1.30 Impact Factor - [Show abstract] [Hide abstract]

**ABSTRACT:**In this work, we discuss the resonance states of a quantum particle in a periodic potential plus a static force. Originally this problem was formulated for a crystal electron subject to a static electric field and it is nowadays known as the Wannier-Stark problem. We describe a novel approach to the Wannier-Stark problem developed in recent years. This approach allows to compute the complex energy spectrum of a Wannier-Stark system as the poles of a rigorously constructed scattering matrix and solves the Wannier-Stark problem without any approximation. The suggested method is very efficient from the numerical point of view and has proven to be a powerful analytic tool for Wannier-Stark resonances appearing in different physical systems such as optical lattices or semiconductor superlattices. Comment: 94 pages, 41 figures, typos corrected, references addedPhysics Reports 11/2001; · 22.93 Impact Factor - [Show abstract] [Hide abstract]

**ABSTRACT:**We systematically study the first three terms in the asymptotic expansions of the moments of the transmission eigenvalues and proper delay times as the number of quantum channels n in the leads goes to infinity. The computations are based on the assumption that the Landauer-B\"utticker scattering matrix for chaotic ballistic cavities can be modelled by the circular ensembles of Random Matrix Theory (RMT). The starting points are the finite-n formulae that we recently discovered (Mezzadri and Simm, J. Math. Phys. 52 (2011), 103511). Our analysis includes all the symmetry classes beta=1,2,4; in addition, it applies to the transmission eigenvalues of Andreev billiards, whose symmetry classes were classified by Zirnbauer (J. Math. Phys. 37 (1996), 4986-5018) and Altland and Zirnbauer (Phys. Rev. B. 55 (1997), 1142-1161). Where applicable, our results are in complete agreement with the semiclassical theory of mesoscopic systems developed by Berkolaiko et al. (J. Phys. A.: Math. Theor. 41 (2008), 365102) and Berkolaiko and Kuipers (J. Phys. A: Math. Theor. 43 (2010), 035101 and New J. Phys. 13 (2011), 063020). Our approach also applies to the Selberg-like integrals. We calculate the first two terms in their asymptotic expansion explicitly.Journal of Mathematical Physics 08/2011; · 1.30 Impact Factor

Data provided are for informational purposes only. Although carefully collected, accuracy cannot be guaranteed. The impact factor represents a rough estimation of the journal's impact factor and does not reflect the actual current impact factor. Publisher conditions are provided by RoMEO. Differing provisions from the publisher's actual policy or licence agreement may be applicable.