Extreme human breath-hold diving

Department of Physiology, University Medical Centre, 1 Rue Michel Servet, 1211 Geneva 4, Switzerland.
Arbeitsphysiologie (Impact Factor: 2.3). 05/2001; 84(4):254-71. DOI: 10.1007/s004210000377
Source: PubMed

ABSTRACT In this paper, the respiratory, circulatory and metabolic adjustments to human extreme breath-hold diving are reviewed. A survey of the literature reveals that in extreme divers, adaptive mechanisms take place that allow prolongation of apnoea beyond the limits attained by non-diving subjects, and preservation of oxygen stores during the dives. The occurrence of a diving response, including peripheral vasoconstriction, increased arterial blood pressure, bradycardia and lowered cardiac output, is strongly implicated. Some peripheral regions may be excluded from perfusion, with consequent reliance on anaerobic metabolism. In addition, extreme breath-hold divers show a blunted ventilatory response to carbon dioxide breathing, possibly as a consequence of frequent exposure to high carbon dioxide partial pressures during the dives. These mechanisms allow the attainment of particularly low alveolar oxygen (< 30 mmHg) and high alveolar carbon dioxide (> 50 mmHg) partial pressures at the end of maximal dry breath-holds, and reduce oxygen consumption during the dive at the expense of increased anaerobic glycolysis (rate of blood lactate accumulation > 0.04 mM.s-1). The current absolute world record for depth in breath-hold diving is 150 m. Its further improvement depends upon how far the equilibrium between starting oxygen stores, the overall rate of energy expenditure, the fraction of energy provided by anaerobic metabolism and the diving speed can be pushed, with consciousness upon emersion. The ultimate limit to breath-hold diving records may indeed be imposed by an energetic constraint.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Elite breath-hold divers are unique athletes challenged with compression induced by hydrostatic pressure and extreme hypoxia/hypercapnia during maximal field dives. The current world records for men are 214 meters for depth (Herbert Nitsch, No-Limits Apnea discipline), 11:35 minutes for duration (Stephane Mifsud, Static Apnea discipline), and 281 meters for distance (Goran olak, Dynamic Apnea with Fins discipline). The major physiological adaptations that allow breath-hold divers to achieve such depths and duration are called the "diving response" that is comprised of peripheral vasoconstriction and increased blood pressure, bradycardia, decreased cardiac output, increased cerebral and myocardial blood flow, splenic contraction, and preserved O-2 delivery to the brain and heart. This complex of physiological adaptations is not unique to humans, but can be found in all diving mammals. Despite these profound physiological adaptations, divers may frequently show hypoxic loss of consciousness. The breath-hold starts with an easy-going phase in which respiratory muscles are inactive, whereas during the second so-called "struggle" phase, involuntary breathing movements start. These contractions increase cerebral blood flow by facilitating left stroke volume, cardiac output, and arterial pressure. The analysis of the compensatory mechanisms involved in maximal breath-holds can improve brain survival during conditions involving profound brain hypoperfusion and deoxygenation.
    Translational Neuroscience 09/2013; 4(3). DOI:10.2478/s13380-013-0130-5 · 0.72 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: During underwater submersion, the body responds by conserving O2 and prioritizing blood flow to the brain and heart. These physiological adjustments, which involve the nervous, cardiovascular, and respiratory systems, are known as the diving response and provide an ideal example of integrative physiology. The diving reflex can be stimulated in the practical laboratory setting using breath holding and facial immersion in water. Our undergraduate physiology students complete a laboratory class in which they investigate the effects of stimulating the diving reflex on cardiovascular variables, which are recorded and calculated with a Finapres finger cuff. These variables include heart rate, cardiac output, stroke volume, total peripheral resistance, and arterial pressures (mean, diastolic, and systolic). Components of the diving reflex are stimulated by 1) facial immersion in cold water (15°C), 2) breathing with a snorkel in cold water (15°C), 3) facial immersion in warm water (30°C), and 4) breath holding in air. Statistical analysis of the data generated for each of these four maneuvers allows the students to consider the factors that contribute to the diving response, such as the temperature of the water and the location of the sensory receptors that initiate the response. In addition to providing specific details about the equipment, protocols, and learning outcomes, this report describes how we assess this practical exercise and summarizes some common student misunderstandings of the essential physiological concepts underlying the diving response. Copyright © 2014 The American Physiological Society.
    AJP Advances in Physiology Education 12/2014; 38(4):355-365. DOI:10.1152/advan.00125.2013 · 1.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Après avoir passé en revue les grands principes de l'entraînement, ce chapitre se penche sur les spécificités liées à l'apnée. il pré sente les facteurs contribuant à la performance en apnée : les facteurs anatomo-physiques, physiologiques, psychologiques et techniques. Ces facteurs sont étudiés en même temps que sont évoqués les exer-cices permettant leur amélioration. La quatrième partie du chapitre présente les éléments permettant la structuration d'un entraînement à l'apnée, par le biais de nombreux exemples d'exercices. Après être revenu sur les composantes spécifiques à l'entraînement en apnée que sont la sécurité et les souffrances psychologiques et physiologiques, le chapitre propose ensuite une méthode d'entraînement répondant à toutes les contraintes évoquées au préalable. Cette méthode repose sur l'utili sation des « performances acquises » permettant de minimiser le stress chronique hypoxique imposé par l'apnée, en ne travaillant simultanément que sur certains facteurs de la performance. Cette méthode présente des intérêts annexes pour la mise en oeuvre d'un entraînement collectif, avec des niveaux hétérogènes chez les élèves et une sécurité maximale. En conclusion, l'accent est mis sur les lacunes actuelles qui engagent à maintenir la sécurité comme une composante majeure de l'entraînement en apnée. Mots-clés : Apnée – Entraînement – Approche pratique – Facteurs et amélio ration des performances – Méthode des performances acquises.
    L'Apnée: de la Théorie à la Pratique, Edited by Frédéric Lemaitre, 01/2015: chapter Chapter 2: pages 327-376; Presses Universitaires de Rouen et du Havre., ISBN: 979-10-240-0345-0


1 Download
Available from