Article

Evidence for a role of the type III-iodothyronine deiodinase in the regulation of 3,5,3'-triiodothyronine content in the human central nervous system.

Department of Endocrinology and Metabolism, University of Pisa, Italy.
European Journal of Endocrinology (Impact Factor: 3.69). 07/2001; 144(6):577-83. DOI: 10.1530/eje.0.1440577
Source: PubMed

ABSTRACT Thyroid hormone is essential for maintaining normal neurological functions both during development and in adult life. Type III-iodothyronine deiodinase (D3) degrades thyroid hormones by converting thyroxine and 3,5,3'-triiodothyroinine (T3) to inactive metabolites. A regional expression of D3 activity has been observed in the human central nervous system (CNS), and a critical role for D3 has been suggested in the regulation of local T3 content in concert with other enzymes.
This study was undertaken to further characterize D3 activity in human CNS and to understand its role in the local regulation of T3 content.
Autoptic specimens from various areas of human CNS were obtained 6--27 h postmortem from 14 donors who died from cardiovascular accident, neoplastic disease or infectious disease. D3 was determined by measuring the conversion of T3 to 3,3'-diiodothyronine. The T3 content was measured by radioimmunoassay in ethanol extracts, using a specific antiserum.
High levels of D3 activity were observed in hippocampus and temporal cortex, lower levels being found in the thalamus, hypothalamus, midbrain cerebellum, parietal and frontal cortex, and brain stem. An inverse relationship between D3 activity and T3 content in these areas was demonstrated.
We have concluded that D3 contributes to the local regulation of T3 content in the human CNS.

0 Followers
 · 
67 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The action of thyroid hormones (THs) in the brain is strictly regulated, since these hormones play a crucial role in the development and physiological functioning of the central nervous system (CNS). Disorders of the thyroid gland are among the most common endocrine maladies. Therefore, the objective of this study was to identify in broad terms the interactions between thyroid hormone states or actions and brain development. THs regulate the neuronal cytoarchitecture, neuronal growth and synaptogenesis, and their receptors are widely distributed in the CNS. Any deficiency or increase of them (hypo- or hyperthyroidism) during these periods may result in an irreversible impairment, morphological and cytoarchitecture abnormalities, disorganization, maldevelopment and physical retardation. This includes abnormal neuronal proliferation, migration, decreased dendritic densities and dendritic arborizations. This drastic effect may be responsible for the loss of neurons vital functions and may lead, in turn, to the biochemical dysfunctions. This could explain the physiological and behavioral changes observed in the animals or human during thyroid dysfunction. It can be hypothesized that the sensitive to the thyroid hormones is not only remarked in the neonatal period but also prior to birth, and THs change during the development may lead to the brain damage if not corrected shortly after the birth. Thus, the hypothesis that neurodevelopmental abnormalities might be related to the thyroid hormones is plausible. Taken together, the alterations of neurotransmitters and disturbance in the GABA, adenosine and pro/antioxidant systems in CNS due to the thyroid dysfunction may retard the neurogenesis and CNS growth and the reverse is true. In general, THs disorder during early life may lead to distortions rather than synchronized shifts in the relative development of several central transmitter systems that leads to a multitude of irreversible morphological and biochemical abnormalities (pathophysiology). Thus, further studies need to be done to emphasize this concept.
    International Journal of Developmental Neuroscience 05/2008; DOI:10.1016/j.ijdevneu.2007.09.011 · 2.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Thyrotropin (TSH) changes in extreme primary hypothyroidism include increased secretion, slowed degradation, and diminished or absent TSH circadian rhythms. Diminished rhythms are also observed in central hypothyroid patients and have been speculated to be a cause of central hypothyroidism. We examined whether TSH secretion saturation, previously suggested in extreme primary hypothyroidism, might explain diminished circadian rhythms in both disorders. We augmented and extended the range of our published feedback control system model to reflect nonlinear changes in extreme primary hypothyroidism, including putative TSH secretion saturation, and quantified and validated it using multiple clinical datasets ranging from euthyroid to extreme hypothyroid (postthyroidectomy). We simulated central hypothyroidism by reducing overall TSH secretion and also simulated normal TSH secretion without circadian oscillation, maintaining plasma TSH at constant normal levels. We also utilized the validated model to explore thyroid hormone withdrawal protocols used to prepare remnant ablation in thyroid cancer patients postthyroidectomy. Both central and extreme primary hypothyroidism simulations yielded low thyroid hormone levels and reduced circadian rhythms, with simulated daytime TSH levels low-to-normal for central hypothyroidism and increased in primary hypothyroidism. Simulated plasma TSH showed a rapid rise immediately following triiodothyronine (T(3)) withdrawal postthyroidectomy, compared with a slower rise after thyroxine withdrawal or postthyroidectomy without replacement. Diminished circadian rhythms in central and extreme primary hypothyroidism can both be explained by pituitary TSH secretion reaching maximum capacity. In simulated remnant ablation protocols using the extended model, TSH shows a more rapid rise after T(3) withdrawal than after thyroxine withdrawal postthyroidectomy, supporting the use of replacement with T(3) prior to (131)I treatment.
    Thyroid: official journal of the American Thyroid Association 11/2010; 20(11):1215-28. DOI:10.1089/thy.2009.0349 · 3.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: During the last few decades our understanding of the possible role of thyroid hormones during brain development has increased and contributed to resolve previously discordant hypotheses, although much remains to be clarified. Thyroid hormones of maternal origin are present in the fetal compartment, despite the very efficient uterine-placental ‘barrier’, necessary to avoid potentially toxic concentrations of free T4 and T3 from reaching fetal tissues before they are required for development. T3 remains low throughout pregnancy, whereas FT4 in fetal fluids increases rapidly to adult levels, and is determined by the maternal availability of T4. It is present in embryonic fluids 4 weeks after conception, with FT4 steadily increasing to biologically relevant values. T3, generated from T4 in the cerebral cortex, reaches adult values by mid-gestation and is partly bound to specific nuclear receptor isoforms. Iodothyronine deioidinases are important for the spatial and temporal regulation of T3 bioavailability, tailored to the differing and changing requirements of thyroid hormone-sensitive genes in different brain structures, but other regulatory mechanism(s) are likely to be involved. Maternal transfer constitutes a major fraction of fetal serum T4, even after onset of fetal thyroid secretion, and continues to have an important protective role in fetal neurodevelopment until birth.Prompt treatment of maternal hypothyroidism, identified by increased TSH, is being advocated to mitigate a negative effect on the woman and her child. However, even a moderate transient period of maternal hypothyroxinemia at the beginning of rat neurogenesis disrupts neuronal migration into cortical layers. These findings reinforce the epidemiological evidence that early maternal hypothyroxinemia—when neuronal migratory waves are starting—is potentially damaging for the child. Detection of an inappropiate first trimester FT4 surge that may not result in increased TSH, may be crucial for the prevention of learning disabilities in a significant number of unborn children.
    Best Practice & Research: Clinical Endocrinology & Metabolism 06/2004; 18(2):225-248. DOI:10.1016/S1521-690X(04)00022-3 · 4.91 Impact Factor

Preview

Download
0 Downloads
Available from