Complement and myoblast transfer therapy: donor myoblast survival is enhanced following depletion of host complement C3 using cobra venom factor, but not in the absence of C5.

Department of Anatomy and Human Biology, University of Western Australia, Crawley, Western Australia, Australia.
Immunology and Cell Biology (Impact Factor: 3.93). 07/2001; 79(3):231-9. DOI: 10.1046/j.1440-1711.2001.01006.x
Source: PubMed

ABSTRACT Myoblast transfer therapy (MTT) is a potential cell therapy for myopathies such as Duchenne Muscular Dystrophy and involves the injection of cultured muscle precursor cells ('myoblasts') isolated from normal donor skeletal muscles into dystrophic host muscle. The failure of donor myoblast survival following MTT is widely accepted as being due to the immune response of the host. The role of complement as one possible mechanism for the initial, very rapid death of myoblasts following MTT was investigated. Donor male myoblasts were injected into the tibialis anterior (TA) muscles of female host mice that were: (i) untreated; (ii) depleted of C3 complement (24 h prior to MTT) using cobra venom factor (CVF); and/or (iii) deficient in C5 complement. Quantification of surviving male donor myoblast DNA was performed using the Y-chromosome specific (Y1) probe on slot blots for samples taken at 0 h, 1 h, 24 h, 1 week and 3 weeks after MTT. Peripheral depletion of C3 was confirmed using double immunodiffusion, and local depletion of C3 in host TA muscles was confirmed by immunostaining of muscle samples. Cobra venom factor treatment significantly increased the initial survival of donor myoblasts, but there was a marked decline in myoblast numbers after 1 h and little long-term benefit by 3 weeks. Strain specific variation in the immediate survival of donor male myoblasts following MTT in untreated C57BL/10Sn, DBA-1 and DBA-2 (C5-deficient) female hosts was observed. Cobra venom factor depletion of C3 increased initial donor male myoblast survival (approximately twofold at 0 h) in C57BL/10Sn and DBA-1 host mice and approximately threefold in DBA-2 hosts at 0 h and 1 h after MTT. The rapid and extensive number (approximately 90%) of donor male myoblasts in untreated DBA-2 mice (that lack C5) indicates that activation of the membrane attack complex (MAC) plays no role in this massive initial cell death. The observation that myoblast survival was increased in all mice treated with CVF suggests that CVF may indirectly enhance donor myoblast survival by a mechanism possibly involving activated C3 fragments.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Duchenne muscular dystrophy (DMD) is a genetic X-linked recessive orphan disease that affects approximately 1 in 3 500 male births. Boys with DMD have progressive and predictable muscle destruction due to the absence of dystrophin, a protein present under the muscle fiber membrane. This absence induces contraction-related membrane damage and activation of inflammatory necrosis and fibrosis, leading to cardiac/diaphragmatic failure and death. The authors support the therapeutic role of myoblast transplantation in DMD, and describe the history and rationale for such an approach.
    Surgery Today 10/2010; 40(10):902-8. · 0.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Stem cell transplantation has emerged as a potential modality in cardiovascular therapeutics due to their inherent characteristics of self-renewal, unlimited capacity for proliferation and ability to cross lineage restrictions and adopt different phenotypes. Constrained by extensive death in the unfriendly milieu of ischemic myocardium, the results of heart cell therapy in experimental animal models as well as clinical studies have been less than optimal. Several factors which play a role in early cell death after engraftment in the ischemic myocardium include: absence of survival factors in the transplanted heart, disruption of cell-cell interaction coupled with loss of survival signals from matrix attachments, insufficient vascular supply and elaboration of inflammatory cytokines resulting from ischemia and/or cell death. This article reviews various signaling pathways involved in triggering highly complex forms of cell death and provides critical appreciation of different novel anti-death strategies developed from the knowledge gained from using an ischemic preconditioning approach. The use of pharmacological preconditioning for up-regulation of pro-survival proteins and cardiogenic markers in the transplanted stem cells will be discussed.
    Journal of Molecular and Cellular Cardiology 06/2008; 45(4):554-66. · 5.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The harsh ischemic and cytokine-rich microenvironment in the infarcted myocardium, infiltrated by the inflammatory and immune cells, offers a significant challenge to the transplanted donor stem cells. Massive cell death occurs during transplantation as well as following engraftment which significantly lowers the effectiveness of the heart cell therapy. Various approaches have been adopted to overcome this problem nevertheless with multiple limitations with each of these current approaches. Cellular preconditioning and reprogramming by physical, chemical, genetic, and pharmacological manipulation of the cells has shown promise and "prime" the cells to the "state of readiness" to withstand the rigors of lethal ischemia in vitro as well as posttransplantation. This review summarizes the past and present novel approaches of ischemic preconditioning, pharmacological and genetic manipulation using preconditioning mimetics, recombinant growth factor protein treatment, and reprogramming of stem cells to overexpress survival signaling molecules, microRNAs, and trophic factors for intracrine, autocrine, and paracrine effects on cytoprotection.
    Journal of Cardiovascular Translational Research 04/2010; 3(2):89-102. · 3.06 Impact Factor

Full-text (2 Sources)

Available from
May 27, 2014