Wang G, Zhao Y, Liu X, Wang L, Wu C, Zhang W et al.. Allelic loss and gain, but not genomic instability, as the major somatic mutation in primary hepatocellular carcinoma. Genes Chromosomes Cancer 31: 221-227

National Laboratory for Oncogene & Related Genes, Shanghai Cancer Institute, Shanghai, China.
Genes Chromosomes and Cancer (Impact Factor: 4.04). 07/2001; 31(3):221-7. DOI: 10.1002/gcc.1138
Source: PubMed


To identify genetic abnormalities in primary hepatocellular carcinoma (HCC), we performed microsatellite analysis (MSA) on 60 Chinese HCC specimens. Utilizing a semi-quantitative MSA and 292 highly polymorphic markers spanning all 22 autosomes, we found that somatic allelic imbalance (AI) occurred frequently in HCC. To evaluate the nature of the AI, comparative genomic hybridization was performed on 20 HCC specimens. The combined use of these two methods revealed frequent allelic loss on 17p, 9p21-p23, 4q, 16q21-q23.3, 13q, 8p21-p23, and 6q24-q27, whereas there was frequent allelic gain on 1q, 17q, and 8q24. The region with the highest incidence of genomic imbalance was 17p13 (65%), followed by 9p21-p23 (55%), 4q (35-51%), 16q21-q23.3 (52%), 17p12 (49%), 13q (39-46%), 8p21-p23 (41-45%), 8q24 (41%), and 1q32 (40%). In addition, aberrations of 19p13.3, 16p13.3, 13q33-q34, 9q13-31, and 7q were reported for the first time. The presence of a close correlation of 17p13 deletion with abnormalities of some other loci implies that 17p13 could play a crucial role in oncogenesis. Interestingly, microsatellite instability was rarely seen in our patients, in contrast to that observed in European HCC samples.

Download full-text


Available from: Gang Greg Wang, Jan 23, 2015
  • Source
    • "HCCS1 was discovered as a liver cancer specific tumor suppressor gene that is frequently mutated in liver cancer [20,21]. A previously constructed oncolytic adenovirus, ZD55-HCCS1, has been shown to elicit strong anti-tumor efficacy [22]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In previously published studies, oncolytic adenovirus-mediated gene therapy has produced good results in targeting cancer cells. However, safety and efficacy, the two most important aspects in cancer therapy, remain serious challenges. The specific expression or deletion of replication related genes in an adenovirus has been frequently utilized to regulate the cancer cell specificity of a virus. Accordingly, in this study, we deleted 24 bp in E1A (bp924-bp947) and the entirety of E1B, including those genes encoding E1B 55kDa and E1B19kDa. We used the survivin promoter (SP) to control E1A in order to construct a new adenovirus vector named Ad.SP.E1A(Δ24).ΔE1B (briefly Ad.SPDD). HCCS1 (hepatocellular carcinoma suppressor 1) is a novel tumor suppressor gene that is able to specifically induce apoptosis in cancer cells. The expression cassette AFP-HCCS1-WPRE-SV40 was inserted into Ad.SPDD to form Ad.SPDD-HCCS1, enabling us to improve the safety and efficacy of oncolytic-mediated gene therapy for liver cancer. Ad.SPDD showed a decreased viral yield and less toxicity in normal cells but enhanced toxicity in liver cancer cells, compared with the cancer-specific adenovirus ZD55 (E1B55K deletion). Ad.SPDD-HCCS1 exhibited a potent anti-liver-cancer ability and decreased toxicity in vitro. Ad.SPDD-HCCS1 also showed a measurable capacity to inhibit Huh-7 xenograft tumor growth on nude mice. The underlying mechanism of Ad.SPDD-HCCS1-induced liver cancer cell death was found to be via the mitochondrial apoptosis pathway. These results demonstrate that Ad.SPDD-HCCS1 was able to elicit reduced toxicity and enhanced efficacy both in vitro and in vivo compared to a previously constructed oncolytic adenovirus. Ad.SPDD-HCCS1 could be a promising candidate for liver cancer therapy.
    Molecular Cancer 11/2011; 10(1):133. DOI:10.1186/1476-4598-10-133 · 4.26 Impact Factor
  • Source
    • "Using genome-wide microsatellite analysis, the deletion on chromosome 8p was further proven to be related to progression and metastasis of HCC, and that 8p23.3 and 8p11.2 were two regions harboring metastasis-related genes [29]. Similar results were obtained in other groups [30,31]. A deletion of chromosome 8p has also been shown to play an important role in the tumor progression and metastasis of many other kinds of human malignancies besides HCC including colorectal [32,33], bladder [34,35], breast [36], larynx [37], renal [38], and lung cancers [39]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The prognosis of patients with hepatocellular carcinoma (HCC) still remains very dismal, which is mainly due to metastasis. In our previous studies, we found that chromosome 8p deletions might contribute to metastasis of HCC. In this study, we aimed to identify the candidate metastatic suppressor gene on chromosome 8p. Oligo-nucleotide microarrays which included 322 genes on human chromosome 8p were constructed to analyze the difference in gene expression profiles between HCC tissues with and without metastasis. The leading differentially expressed genes were identified and selected for further analysis by real-time PCR and Western blotting. Recombinant expression plasmid vectors for each target gene were constructed and transfected into HCC cells and its in vitro effects on proliferation and invasion of HCC cells were also investigated. Sixteen leading differentially expressed genes were identified from the HCC tissues with metastasis compared with those without metastasis (p < 0.01, q < 16 %). Among of the 10 significantly down-regulated genes in HCC with metastasis, methionine sulfoxide reductase A (MSRA) had the lowest p value and false discovery rate (FDR), and was considered as a potential candidate for metastasis suppressor gene. Real-time PCR and Western blotting confirmed that the mRNA and protein expression levels of MSRA were significantly decreased in HCC with metastasis compared with those without metastasis (p < 0.001), and MSRA mRNA level in HCCLM6 cells (with high metastatic potential) was also much lower than that of other HCC cell lines. Transfection of a recombinant expression plasmid vector and overexpression of MSRA gene could obviously inhibit cell colony formation (4.33 +/- 2.92 vs. 9.17 +/- 3.38, p = 0.008) and invasion (7.40 +/- 1.67 vs. 17.20 +/- 2.59, p= 0.0001) of HCCLM6 cell line. MSRA gene on chromosome 8p might possess metastasis suppressor activity in HCC.
    BMC Cancer 09/2007; 7(1):172. DOI:10.1186/1471-2407-7-172 · 3.36 Impact Factor
  • Source
    • "Therefore , a clear definition of the genomic aberration profile during multistep hepatocarcinogenesis would be of value. For that purpose, loss of heterozygosity (LOH) analyses and comparative genomic hybridization (CGH) [4] analyses have been applied to HCC, revealing recurrent chromosomal alterations on 1p, 1q, 4q, 6p, 6q, 8p, 8q, 13q, 16q, 17p and 17q [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: We conducted an analysis of chromosomal numerical aberrations and their clinical significance in hepatocellular carcinoma. We analyzed 87 hepatocellular carcinomas by array-based comparative genomic hybridization with an array containing 800 bacterial artificial chromosome clones. Frequent (>30%) chromosomal losses on 1p36.1, 4q21-25, 4q34-35.1, 8p23.3b-11.1, 13q14.1-14.3, 16p13.3, 16q22.1-24.3b, 17p13.3-13.1 and 17p13.3-11, and gains on 1q21-44f, 2q21.2, 2q34, 3q11.2, 5p14.2, 5q13.2-14, 7p22, 7p14.2, 7q21.1, 7q22.3, 7q34, 8q12-24.3 and 17q23, were observed. Recurrent (>5%) amplifications were detected on 1q25, 8q11 and 11q11, and we discovered a novel homozygous deletion at 14q32.11. The extent of chromosomal aberrations correlated significantly with various clinicopathological characteristics of the tumors, and increased in a stepwise manner with the progression of hepatocellular carcinoma. We also identified novel chromosomal alterations that were significantly associated with a range of malignant phenotypes. Multivariate analysis revealed that both chromosomal loss on 17p13.3 and gain on 8q11 are independent prognostic indicators. Our results contribute to a complete description of genomic structural aberrations in relation to hepatocarcinogenesis and provide a valuable basis from which we can begin to understand the characteristics of tumors, predict patient outcomes and discover novel therapeutic targets for hepatocellular carcinoma.
    Journal of Hepatology 12/2005; 43(5):863-74. DOI:10.1016/j.jhep.2005.05.033 · 11.34 Impact Factor
Show more