Article

Allelic loss and gain, but not genomic instability, as the major somatic mutation in primary hepatocellular carcinoma

National Laboratory for Oncogene & Related Genes, Shanghai Cancer Institute, Shanghai, China.
Genes Chromosomes and Cancer (Impact Factor: 3.84). 07/2001; 31(3):221-7. DOI: 10.1002/gcc.1138
Source: PubMed

ABSTRACT To identify genetic abnormalities in primary hepatocellular carcinoma (HCC), we performed microsatellite analysis (MSA) on 60 Chinese HCC specimens. Utilizing a semi-quantitative MSA and 292 highly polymorphic markers spanning all 22 autosomes, we found that somatic allelic imbalance (AI) occurred frequently in HCC. To evaluate the nature of the AI, comparative genomic hybridization was performed on 20 HCC specimens. The combined use of these two methods revealed frequent allelic loss on 17p, 9p21-p23, 4q, 16q21-q23.3, 13q, 8p21-p23, and 6q24-q27, whereas there was frequent allelic gain on 1q, 17q, and 8q24. The region with the highest incidence of genomic imbalance was 17p13 (65%), followed by 9p21-p23 (55%), 4q (35-51%), 16q21-q23.3 (52%), 17p12 (49%), 13q (39-46%), 8p21-p23 (41-45%), 8q24 (41%), and 1q32 (40%). In addition, aberrations of 19p13.3, 16p13.3, 13q33-q34, 9q13-31, and 7q were reported for the first time. The presence of a close correlation of 17p13 deletion with abnormalities of some other loci implies that 17p13 could play a crucial role in oncogenesis. Interestingly, microsatellite instability was rarely seen in our patients, in contrast to that observed in European HCC samples.

Full-text

Available from: Gang Greg Wang, Jan 23, 2015
0 Followers
 · 
46 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To explore new molecular diagnosis approaches for early detection and differential diagnosis of hepatocellular carcinoma (HCC), we analyzed genomic copy number variations (CNV) using plasma cell-free DNA from patients with HCC by next generation DNA sequencing. Plasma samples from 31 patients with HCC and 8 patients with chronic hepatitis or cirrhosis were analyzed. In HCC group, most samples with large tumor size (tumor dimension greater than 50 mm) showed CNVs that are visually recognizable at chromosome CNV plots, few samples with small tumor and none samples with chronic liver diseases showed CNVs recognizable at CNV plots. CNV Z score analysis showed significant CNVs in samples with HCC and chronic liver diseases although more significant changes were found in HCC group, some are differentially valuable (such as gain in 1q, 7q, and 19q in HCC), while others are less differentially valuable (such as loss in 4q, 13q, gain in 17q, 22q). We proposed a CNV scoring method that generated positive result in 26 of the 31 HCC patients (83.9%) or 11 of the 16 HCC with tumor dimension 50 mm or less (68.8%) or 4 of the 7 HCC with tumor dimension 30 mm or less (57.1%), while all the 8 samples with chronic hepatitis or cirrhosis scored negative. Ten HCC patients had normal or low serum AFP levels, among them, 7 were scored positive by CNV analysis, including 4 with tumor dimension 50 mm or less. Our study suggested that non-invasive genomic CNV analysis using plasma samples could be a valuable tool for early detection and differential diagnosis of HCC. Although CNV analysis itself cannot establish the diagnosis, it can help identify patients at high risk for HCC among patients with chronic liver diseases, which would prompt closer and more frequent surveillance for early tumor detection and intervention.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hepatocellular carcinoma (HCC) has been known as one of the most lethal human malignancies, due to the difficulty of early detection, chemoresistance, and radioresistance, and is characterized by active angiogenesis and metastasis, which account for rapid recurrence and poor survival. Its development has been closely associated with multiple risk factors, including hepatitis B and C virus infection, alcohol consumption, obesity, and diet contamination. Genetic alterations and genomic instability, probably resulted from unrepaired DNA lesions, are increasingly recognized as a common feature of human HCC. Dysregulation of DNA damage repair and signaling to cell cycle checkpoints, known as the DNA damage response (DDR), is associated with a predisposition to cancer and affects responses to DNA-damaging anticancer therapy. It has been demonstrated that various HCC-associated risk factors are able to promote DNA damages, formation of DNA adducts, and chromosomal aberrations. Hence, alterations in the DDR pathways may accumulate these lesions to trigger hepatocarcinogenesis and also to facilitate advanced HCC progression. This review collects some of the most known information about the link between HCC-associated risk factors and DDR pathways in HCC. Hopefully, the review will remind the researchers and clinicians of further characterizing and validating the roles of these DDR pathways in HCC.
    BioMed Research International 04/2014; 2014:153867. DOI:10.1155/2014/153867 · 2.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Along the course of occurrence and development of liver cancer, the corresponding somatic cells accumulate some important genetic variations. These variations may be divided into two categories. For the genetic changes closely related to etiology of liver cancer, the well-known cases include insertion and integration of the hepatitis B virus (HBV) DNA after infection, and mutations at site 249 of the tumor suppressor gene p53 induced by exposure to aflatoxin B1. The secondary genetic changes include amplification and deletion of certain chromosome regions, mutations in p53 at the sites other than 249, as well as the mutational activation of the Wnt/beta-catenin signal pathway. The tumor cells with these genetic variations may gradually become the dominant clones under evolutionary selection. Besides, identification of genetic susceptible against risk of liver malignancy is also an important aspect of research in this field.
    Science in China Series C Life Sciences 01/2009; 52(1):24-30. DOI:10.1007/s11427-009-0010-y · 1.61 Impact Factor