Article

Tumor autocrine motility factor is an angiogenic factor that stimulates endothelial cell motility.

Department of Hygienics, Gifu Pharmaceutical University, Gifu, 502, Japan.
Biochemical and Biophysical Research Communications (Impact Factor: 2.41). 08/2001; 285(1):118-28. DOI: 10.1006/bbrc.2001.5135
Source: PubMed

ABSTRACT Autocrine motility factor (AMF) is a type of tumor-secreted cytokine which primarily stimulates tumor cell motility via receptor-mediated signaling pathways, and is thought to be connected to tumor progression and metastasis. Using in vivo models, we showed that critical neovascularization responded to a biological amount of AMF. This angiogenic activity was fixed by specific inhibitors against AMF. AMF stimulated in vitro motility of human umbilical vein endothelial cells (HUVECs), inducing the expression of cell surface AMF receptor localizing a single predominant perinuclear pattern closely correlated with its motile ability. AMF also elicited the formation of tube-like structures mimicking angiogenesis when HUVECs were grown in three-dimensional type I collagen gels. We further immunohistochemically detected AMF receptors on the surrounding sites of newborn microvessels. These findings suggest that AMF is a possible tumor progressive angiogenic factor which may act in a paracrine manner for the endothelial cells in the clinical neoplasm, and it will be a new target for antiangiogenic treatment.

0 Bookmarks
 · 
45 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: In Echinococcus multilocularis metacestodes, the surface-associated and highly glycosylated laminated layer, and molecules associated with this structure, is believed to be involved in modulating the host-parasite interface. We report on the molecular and functional characterisation of E. multilocularis phosphoglucose isomerase (EmPGI), which is a component of this laminated layer. The EmPGI amino acid sequence is virtually identical to that of its homologue in Echinococcus granulosus, and shares 64% identity and 86% similarity with human PGI. Mammalian PGI is a multi-functional protein which, besides its glycolytic function, can also act as a cytokine, growth factor and inducer of angiogenesis, and plays a role in tumour growth, development and metastasis formation. Recombinant EmPGI (recEmPGI) is also functionally active as a glycolytic enzyme and was found to be present, besides the laminated layer, in vesicle fluid and in germinal layer cell extracts. EmPGI is released from metacestodes and induces a humoral immune response in experimentally infected mice, and vaccination of mice with recEmPGI renders these mice more resistant towards secondary challenge infection, indicating that EmPGI plays an important role in parasite development and/or in modulating the host-parasite relationship. We show that recEmPGI stimulates the growth of isolated E. multilocularis germinal layer cells in vitro and selectively stimulates the proliferation of bovine adrenal cortex endothelial cells but not of human fibroblasts and rat hepatocytes. Thus, besides its role in glycolysis, EmPGI could also act as a factor that stimulates parasite growth and potentially induces the formation of novel blood vessels around the developing metacestode in vivo.
    International journal for parasitology 11/2010; 40(13):1563-74. · 3.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phosphoglucose isomerase (PGI) is a glycolytic enzyme that exhibits a dual function as an extracellular cytokine, under the name autocrine motility factor (AMF). Its cell surface receptor, gp78/AMFR, is also localized to the endoplasmic reticulum where it functions as an E3 ubiquitin ligase. Expression of both AMF/PGI and gp78/AMFR is associated with cancer and, in this review, we will discuss various aspects of the biology of this ligand-receptor complex and its role in tumor progression.
    Molecular BioSystems 09/2009; 5(8):793-801. · 3.35 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Autocrine motility factor (AMF) is a multifunctional cytokine that promotes cellular adhesion, proliferation, motility, anti-apoptosis, and tissue repair. Direct nerve implantation (DNI) is considered to be effective in peripheral motor nerve injuries with disuse of the distal nerve; however, the repaired muscle function is not satisfactory. In our study, purified AMF was injected in reinnervated muscle after DNI with the intention of assessing if AMF, as a malignant tumor-related cytokine, could improve motor plate regeneration and neuromuscular function restoration. METHODS: Purified AMF, which was extracted from AMF-transfected myoblast-conditioned medium, was regularly injected into the rat gastrocnemius in an established rat gastrocnemius denervation and reinnervation model. The nerve conduction velocity (NCV) of the tibial nerve, peak-to-peak value (PPV), area under the curve (AUC) of the compound muscle action potential (CMAP) and the Tibial Functional Index (TFI) were measured at 8, 16 and 24 weeks after injection. The regenerated endplates in gastrocnemius were examined by histochemical staining. In another group, an AMF-free solution was injected as the control. RESULTS: After the AMF injection, the direct-nerve-implanted muscle function recovery was better in terms of both the nerve velocity and the quality. The endplates in the experimental group also had a quantitative advantage in restoration. After comparing the histochemical-stained tissues, no indications of tumorigenesis were detected. CONCLUSIONS: AMF had positive effects on neuromuscular reparation and need more detailed research to determine the signalling pathways and side effects of AMF.
    Acta Neurochirurgica 02/2013; · 1.55 Impact Factor