Article

Effect of thickening agents, based on soluble dietary fiber, on the availability of calcium, iron, and zinc from infant formulas.

Department of Pharmaceutical Sciences, Laboratory of Food Sciences, University of Antwerp, Antwerp (Wilrijk), Belgium.
Nutrition (Impact Factor: 2.86). 01/2001; 17(7-8):614-8. DOI: 10.1016/S0899-9007(01)00541-X
Source: PubMed

ABSTRACT Although it is accepted that dietary fiber probably is not needed in the diets of infants younger than 1 y, babies suffering from regurgitation are often fed with infant formulas thickened with considerable amounts of fiber. The effect of increasing amounts of alginic acid, locust-bean gum, and guar gum was studied from casein and whey-based infant formulas. A dialysis in vitro method with preliminary intraluminal digestion, adapted to the conditions of infants younger than 6 mo, was used. Human milk was used as the reference standard. Elemental contents of samples and dialysates were determined by atomic absorption spectrometry. Soluble dietary fiber inhibited mineral availability more in casein than in whey-based formulas. Mineral availabilities from casein- and whey-based formulas supplemented with 0.42 g of locust-bean gum/100 mL were 9.4% (0.7) and 10.4% (0.6) for calcium (P < 0.05), 0.32% (0.08) and 1.45% (0.17) for iron (P < 0.05), and 3.2% (0.2) and 5.6% (0.5) for zinc (P < 0.05), respectively. Calcium availability from the whey formula decreased in the presence of each fiber source, especially guar gum and alginic acid. Supplementing 2 g of alginic acid-based agents per 100 mL depressed calcium availability from 13.3% (1.2) to 5.3% (0.3; P < 0.05). With respect to iron and zinc, availabilities increased from 1.28% (0.28) to 6.05% (0.96; P < 0.05) and from 6.7% (0.6) to 10.2% (1.0), respectively, with the addition of 2 g of alginic acid (P < 0.05). Both gums lowered iron and zinc availabilities, and guar gum affected iron availability more severely than locust-bean gum did. Iron availabilities were 1.45% (0.17) from formula thickened with locust-bean gum (0.42 g/100 mL) and 0.92% (0.15) from formula thickened with guar gum (P < 0.05). Adding thickening agents based on soluble dietary fiber to traditional infant formulas probably affects calcium, iron, and zinc availability in various ways.

0 Bookmarks
 · 
60 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Physiologic effects of dietary oat β-glucan and low and high dietary calcium-phosphorus (CaP) on intestinal morphology and gene expression related to SCFA absorption, mucus production, inflammation, and peptide digestion have not been established in weaned mammals. We therefore randomized 32 weaned pigs into 4 equal groups that received a cornstarch-casein-based diet with low (65% of the Ca and P requirement) and high (125 and 115% of the Ca and P requirement, respectively) CaP levels and low- and high-CaP diets supplemented with 8.95% oat β-glucan concentrate for 14 d. High-CaP diets downregulated duodenal expression of IL-1β (P < 0.05) by 30% compared with low-CaP diets. Furthermore, high-CaP diets reduced (P < 0.05) cecal crypt depth by 14% compared with low-CaP diets. Dietary β-glucan upregulated the expression of cecal MCT1 (P < 0.05) by 40% and that of colonic IL-6 (P < 0.05) by 142% compared with the control diet. Correlation analysis indicated that cecal MCT1 (r = 0.99, P < 0.001) and colonic IL-6 (r = 0.84, P < 0.05) expression was positively related to luminal butyrate and total SCFA, respectively, indicating that β-glucan may partly modify gene expression via increased SCFA generation. In conclusion, β-glucan and CaP levels modulated the expression of selected genes and morphology in the postweaning period, but effects were specific to intestinal segment. The present results further indicate that, in addition to being essential nutrients for bone accretion, dietary CaP level may modify the intestinal tissue response in young pigs.
    Journal of Nutrition 02/2012; 142(4):668-74. · 4.20 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many edible seaweeds are rich in magnesium (Mg). However, Mg absorption is low in some seaweeds because fibers in these seaweeds suppress Mg absorption. We hypothesize that Mg absorption from some other seaweeds is not low because of the diversity of fibers. We measured Mg concentration and Mg solubility after in vitro digestion in edible seaweeds, Aosa (Ulvaceae pertusa), Kombu (Laminaria japonica) and Funori (Gloiopeltis furcata). Then we determined Mg absorption in rats given diets containing these seaweeds or magnesium oxide as the major source of Mg, and calculated Mg absorption from seaweeds. The fractional apparent absorption of Mg in seaweeds was Kombu = magnesium oxide > Aosa = Funori. Mg concentration was Aosa > Kombu and Funori had an intermediate amount of Mg, while Mg solubility after in vitro digestion was Funori = Kombu > Aosa. Consequently, the absorbable Mg concentration was Aosa = Kombu > Funori. The absorption of Mg from different seaweeds differs and is not affected by the Mg solubility alone. The absorbable Mg concentration was high in Aosa and in Kombu, indicating that Aosa and Kombu are good sources of Mg.
    Journal of the Science of Food and Agriculture 02/2012; 92(11):2305-9. · 1.76 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Calcium, phytic acid, polyphenols and fiber are major inhibitors of iron absorption and they could be found in excess in some diets, thereby altering or modifying the iron nutrition status. The purpose of this study is to evaluate the effect of calcium, tannic acid, phytic acid, and pectin over iron uptake, using an in vitro model of epithelial cells (Caco-2 cell line). Caco-2 cells were incubated with iron (10-30 μM) with or without CaCl2 (500 and 1,000 μM) for 24 h. Then, cells were challenged with phytic acid (50-150 μM); pectin (50-150 nM) or tannic acid (100-500 μM) for another 24 h. Finally, (55)Fe (10 μM) uptake was determined. Iron dialyzability was studied using an in vitro digestion method. Iron uptake in cells pre-incubated with 20 and 30 μM Fe was inhibited by CaCl2 (500 μM). Iron uptake decreased in cells cultured with tannic acid (300 μM) and CaCl2 (500-1,000 μM) (two-way ANOVA, p = 0.002). Phytic acid also decreased iron uptake mainly when cells were treated with CaCl2 (1,000 μM) (two-way ANOVA; p < 0.05). Pectin slightly decreased iron uptake (p = NS). Iron dialyzability decreased when iron was mixed with CaCl2 and phytic or tannic acid (T test p < 0.0001, for both) but not when mixed with pectin. Phytic acid combined with calcium is a strong iron uptake inhibitor. Pectin slightly decreased iron uptake with or without calcium. Tannic acid showed an unexpected behavior, inducing an increase on iron uptake, despite its low Fe dialyzability.
    Biological trace element research 02/2014; · 1.92 Impact Factor

Full-text (2 Sources)

View
0 Downloads
Available from