Article

Evidence for three fast myosin heavy chain isoforms in type II skeletal muscle fibers in the adult llama (Lama glama).

Anatomy Unit, Department of Physiology and Basic Sciences, Faculty of Veterinary Sciences, University of Buenos Aires, Buenos Aires, Argentina.
Journal of Histochemistry and Cytochemistry (Impact Factor: 2.4). 09/2001; 49(8):1033-44. DOI: 10.1177/002215540104900811
Source: PubMed

ABSTRACT Skeletal muscle fiber types classified on the basis of their content of different myosin heavy chain (MHC) isoforms were analyzed in samples from hindlimb muscles of adult sedentary llamas (Lama glama) by correlating immunohistochemistry with specific anti-MHC monoclonal antibodies, myofibrillar ATPase (mATPase) histochemistry, and quantitative histochemistry of fiber metabolic and size properties. The immunohistochemical technique allowed the separation of four pure (i.e., expressing a unique MHC isoform) muscle fiber types: one slow-twitch (Type I) and three fast-twitch (Type II) phenotypes. The same four major fiber types could be objectively discriminated with two serial sections stained for mATPase after acid (pH 4.5) and alkaline (pH 10.5) preincubations. The three fast-twitch fiber types were tentatively designated as IIA, IIX, and IIB on the basis of the homologies of their immunoreactivities, acid denaturation of their mATPase activity, size, and metabolic properties expressed at the cellular level with the corresponding isoforms of rat and horse muscles. Acid stability of their mATPase activity increased in the rank order IIA>IIX>IIB. The same was true for size and glycolytic capacity, whereas oxidative capacity decreased in the same rank order IIA>IIX>IIB. In addition to these four pure fibers (I, IIA, IIX, and IIB), four other fiber types with hybrid phenotypes containing two (I+IIA, IIAX, and IIXB) or three (IIAXB) MHCs were immunohistochemically delineated. These frequent phenotypes (40% of the semitendinosus muscle fiber composition) had overlapped mATPase staining intensities with their corresponding pure fiber types, so they could not be delineated by mATPase histochemistry. Expression of the three fast adult MHC isoforms was spatially regulated around islets of Type I fibers, with concentric circles of fibers expressing MHC-IIA, then MHC-IIX, and peripherally MHC-IIB. This study demonstrates that three adult fast Type II MHC isoproteins are expressed in skeletal muscle fibers of the llama. The general assumption that the very fast MHC-IIB isoform is expressed only in small mammals can be rejected.

0 Bookmarks
 · 
71 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Satellite cells derived from fast and slow muscles have been shown to adopt contractile and metabolic properties of their parent muscle. Mouse muscle shows less distinctive fiber-type profiles than rat or rabbit muscle. Therefore, in this study we sought to determine whether three-dimensional muscle constructs engineered from slow soleus (SOL) and fast tibialis anterior (TA) from mice would adopt the contractile and metabolic properties of their parent muscle. Time-to-peak tension (TPT) and half-relaxation time (1/2RT) was significantly slower in SOL constructs. In agreement with TPT, TA constructs contained significantly higher levels of fast myosin heavy chain (MHC) and fast troponin C, I, and T isoforms. Fast SERCA protein, both slow and fast calsequestrin isoforms and parvalbumin were found at higher levels in TA constructs. SOL constructs were more fatigue resistant and contained higher levels of the mitochondrial proteins SDH and ATP synthase and the fatty acid transporter CPT-1. SOL constructs contained lower levels of the glycolytic enzyme phosphofructokinase but higher levels of the β-oxidation enzymes LCAD and VLCAD suggesting greater fat oxidation. Despite no changes in PGC-1α protein, SOL constructs contained higher levels of SIRT1 and PRC. TA constructs contained higher levels of the slow-fiber program repressor SOX6 and the six transcriptional complex (STC) proteins Eya1and Six4 which may underlie the higher in fast-fiber and lower slow-fiber program proteins. Overall, we have found that muscles engineered from predominantly slow and fast mouse muscle retain contractile and metabolic properties of their native muscle. J. Cell. Physiol. © 2014 Wiley Periodicals, Inc.
    Journal of Cellular Physiology 10/2014; DOI:10.1002/jcp.24848 · 3.87 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Skeletal muscle fibre type, cross-sectional area (CSA), maximum enzyme capacities and fibre oxidative capacities were investigated in three southern African antelope species. Muscle samples from blesbok (Damaliscus pygargus phillipsi), mountain reedbuck (Redunca fulvorufula) and greater kudu (Tragelaphus strepsiceros) were collected post mortem from the Vastus lateralis and analysed for myosin heavy chain (MHC) isoform content, citrate synthase (CS), 3-hydroxyacyl Co A dehydrogenase (3-HAD), phosphofructokinase (PFK), lactate dehydrogenase (LDH) and creatine kinase (CK) activities. Histochemistry and immunohistochemistry were performed to determine relative fibre oxidative capacity, fibre type and cross-sectional area (CSA). Type IIX fibres were the most abundant fibre type in all three species, ranging from 43 to 57%. Kudu had less type IIX fibres than mountain reedbuck and blesbok (P<0.05), values confirmed by their respective MHC isoform content. Blesbok had the smallest fibres, followed by mountain reedbuck and finally kudu (P<0.001). Overall, all three species had high oxidative and glycolytic capacities, but species differences were found. Kudu had the lowest CS activity, followed by blesbok and mountain reedbuck, but the highest PFK, LDH and CK activities. This study confirmed large variation in oxidative capacities within a single fibre type, as well as overlap between the fibre types with no distinct differences between the three species. The fibre type profile of each species is discussed and confirms some of their physical attributes and capabilities.
    10/2014; DOI:10.1242/bio.20149241

Preview

Download
1 Download
Available from