Article

Postnatal passive immunization of neonatal macaques with a triple combination of human monoclonal antibodies against oral simian-human immunodeficiency virus challenge.

Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA.
Journal of Virology (Impact Factor: 4.65). 09/2001; 75(16):7470-80. DOI: 10.1128/JVI.75.16.7470-7480.2001
Source: PubMed

ABSTRACT To develop prophylaxis against mother-to-child human immunodeficiency virus (HIV) transmission, we established a simian-human immunodeficiency virus (SHIV) infection model in neonatal macaques that mimics intrapartum mucosal virus exposure (T. W. Baba et al., AIDS Res. Hum. Retroviruses 10:351-357, 1994). Using this model, neonates were protected from mucosal SHIV-vpu(+) challenge by pre- and postnatal treatment with a combination of three human neutralizing monoclonal antibodies (MAbs), F105, 2G12, and 2F5 (Baba et al., Nat. Med. 6:200-206, 2000). In the present study, we used this MAb combination only postnatally, thereby significantly reducing the quantity of antibodies necessary and rendering their potential use in humans more practical. We protected two neonates with this regimen against oral SHIV-vpu(+) challenge, while four untreated control animals became persistently infected. Thus, synergistic MAbs protect when used as immunoprophylaxis without the prenatal dose. We then determined in vitro the optimal MAb combination against the more pathogenic SHIV89.6P, a chimeric virus encoding env of the primary HIV89.6. Remarkably, the most potent combination included IgG1b12, which alone does not neutralize SHIV89.6P. We administered the combination of MAbs IgG1b12, 2F5, and 2G12 postnatally to four neonates. One of the four infants remained uninfected after oral challenge with SHIV89.6P, and two infants had no or a delayed CD4(+) T-cell decline. In contrast, all control animals had dramatic drops in their CD4(+) T cells by 2 weeks postexposure. We conclude that our triple MAb combination partially protected against mucosal challenge with the highly pathogenic SHIV89.6P. Thus, combination immunoprophylaxis with passively administered synergistic human MAbs may play a role in the clinical prevention of mother-to-infant transmission of HIV type 1.

Full-text

Available from: Regina Hofmann-Lehmann, Apr 07, 2014
1 Follower
 · 
178 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background HIV-infected long-term non-progressor (LTNP) subjects can prevent viral replication and may harbor useful information for the development of both antibody and active vaccination treatments. In this study we used LTNP sera to examine the epitopes presented to the gp160 protein, and from this procedure we hope to elucidate potential biomarkers pertaining to the level of resistance a patient may have in developing AIDS after infection with HIV. We used five clinical sera samples from LTNP patients to identify common epitopes by ELISA; peptides with high binding to sera were selected and analyzed for conservation among HIV clades. Antibodies were generated against one identified epitope using a chimeric peptide in BALB/c mice, and both the sera from these mice and LTNP sera were tested for viral inhibition capabilities. Results A monoclonal antibody, CL3, against one identified epitope was used to compare these epitopes neutralizing capability. LTNP sera was also studied to determine chemokine/cytokine changes in these patients. The sera from LTNP patients 2, 3, 4, and 5 were identified as having the highest titers, and also significantly inhibited syncytia formation in vitro. Finally, the protein cytokine array demonstrated that I-309 and IGFBP-1 decreased in LTNPs, but levels of TIMP-1 and NAP-2 increased significantly. Conclusions Our results indicate that the use of LTNP samples may be a useful for identifying further anti-viral epitopes, and may be a possible predictor for determining if patients show higher resistances of converting the HIV infection to AIDS.
    BMC Immunology 04/2015; 16(1). DOI:10.1186/s12865-015-0094-z · 2.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The importance of paradigms for guiding scientific research is explained with reference to the seminal work of Karl Popper and Thomas Kuhn. A prevalent paradigm, followed for more than a decade in HIV-1 vaccine research, which gave rise to the strategy known as structure-based reverse vaccinology is described in detail. Several reasons why this paradigm did not allow the development of an effective HIV-1 vaccine are analyzed. A major reason is the belief shared by many vaccinologists that antibodies possess a narrow specificity for a single epitope and are not polyspecific for a diverse group of potential epitopes. When this belief is abandoned, it becomes obvious that the one particular epitope structure observed during the crystallographic analysis of a neutralizing antibody-antigen complex does not necessarily reveal, which immunogenic structure should be used to elicit the same type of neutralizing antibody. In the physical sciences, scientific explanations are usually presented as logical deductions derived from a relevant law of nature together with certain initial conditions. In immunology, causal explanations in terms of a single cause acting according to a law of nature are not possible because numerous factors always play a role in bringing about an effect. The implications of this state of affairs for the rational design of HIV vaccines are outlined. An alternative approach to obtain useful scientific understanding consists in intervening empirically in the immune system and it is suggested that manipulating the system experimentally is needed to learn to control it and achieve protective immunity by vaccination.
    Frontiers in Immunology 11/2014; 5:593. DOI:10.3389/fimmu.2014.00593
  • [Show abstract] [Hide abstract]
    ABSTRACT: Protein microbicides against HIV can help to prevent infection but they are required in large, repetitive doses. This makes current fermenter-based production systems prohibitively expensive. Plants are advantageous as production platforms because they offer a safe, economical and scalable alternative, and cereals such as rice are particularly attractive because they could allow pharmaceutical proteins to be produced economically and on a large scale in developing countries. Pharmaceutical proteins can also be stored as unprocessed seed, circumventing the need for a cold chain. Here, we report the development of transgenic rice plants expressing the HIV-neutralizing antibody 2G12 in the endosperm. Surprisingly for an antibody expressed in plants, the heavy chain was predominantly aglycosylated. Nevertheless, the heavy and light chains assembled into functional antibodies with more potent HIV-neutralizing activity than other plant-derived forms of 2G12 bearing typical high-mannose or plant complex-type glycans. Immunolocalization experiments showed that the assembled antibody accumulated predominantly in protein storage vacuoles but also induced the formation of novel, spherical storage compartments surrounded by ribosomes indicating that they originated from the endoplasmic reticulum. The comparison of wild-type and transgenic plants at the transcriptomic and proteomic levels indicated that endogenous genes related to starch biosynthesis were down-regulated in the endosperm of the transgenic plants, whereas genes encoding prolamin and glutaredoxin-C8 were up-regulated. Our data provide insight into factors that affect the functional efficacy of neutralizing antibodies in plants and the impact of recombinant proteins on endogenous gene expression. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
    Plant Biotechnology Journal 04/2015; DOI:10.1111/pbi.12360 · 5.68 Impact Factor