SOS Mutator DNA Polymerase IV Functions in Adaptive Mutation and Not Adaptive Amplification

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030-3411, USA.
Molecular Cell (Impact Factor: 14.02). 04/2001; 7(3):571-9. DOI: 10.1016/S1097-2765(01)00204-0
Source: PubMed


Adaptive point mutation and amplification are induced responses to environmental stress, promoting genetic changes that can enhance survival. A specialized adaptive mutation mechanism has been documented in one Escherichia coli assay, but its enzymatic basis remained unclear. We report that the SOS-inducible, error-prone DNA polymerase (pol) IV, encoded by dinB, is required for adaptive point mutation in the E. coli lac operon. A nonpolar dinB mutation reduces adaptive mutation frequencies by 85% but does not affect adaptive amplification, growth-dependent mutation, or survival after oxidative or UV damage. We show that pol IV, together with the major replicase, pol III, can account for all adaptive point mutations at lac. The results identify a role for pol IV in inducible genetic change.

Download full-text


Available from: Peter L Lee, Feb 13, 2015
8 Reads
  • Source
    • "Top center shows that, in a DinB þ strain, stable revertants are about 90% of total and unstable revertants are 10%. Top right shows that, without DinB, the number of stable revertants is reduced about 10-fold and becomes roughly equal to the number of unstable revertants (Foster 2000; McKenzie et al. 2001). That is, even without the mutagenic DinB polymerase, the number of stable revertants increases with time under selection. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Selection detects mutants but does not cause mutations. Contrary to this dictum, Cairns and Foster plated a leaky lac mutant of Escherichia coli on lactose medium and saw revertant (Lac(+)) colonies accumulate with time above a nongrowing lawn. This result suggested that bacteria might mutagenize their own genome when growth is blocked. However, this conclusion is suspect in the light of recent evidence that revertant colonies are initiated by preexisting cells with multiple copies the conjugative F'lac plasmid, which carries the lac mutation. Some plated cells have multiple copies of the simple F'lac plasmid. This provides sufficient LacZ activity to support plasmid replication but not cell division. In nongrowing cells, repeated plasmid replication increases the likelihood of a reversion event. Reversion to lac(+) triggers exponential cell growth leading to a stable Lac(+) revertant colony. In 10% of these plated cells, the high-copy plasmid includes an internal tandem lac duplication, which provides even more LacZ activity—sufficient to support slow growth and formation of an unstable Lac(+) colony. Cells with multiple copies of the F'lac plasmid have an increased mutation rate, because the plasmid encodes the error-prone (mutagenic) DNA polymerase, DinB. Without DinB, unstable and stable Lac(+) revertant types form in equal numbers and both types arise with no mutagenesis. Amplification and selection are central to behavior of the Cairns-Foster system, whereas mutagenesis is a system-specific side effect or artifact caused by coamplification of dinB with lac. Study of this system has revealed several broadly applicable principles. In all populations, gene duplications are frequent stable genetic polymorphisms, common near-neutral mutant alleles can gain a positive phenotype when amplified under selection, and natural selection can operate without cell division when variability is generated by overreplication of local genome subregions.
    Cold Spring Harbor perspectives in biology 07/2015; 7(7). DOI:10.1101/cshperspect.a018176 · 8.68 Impact Factor
  • Source
    • "Thus the Cairns system shows very little evidence of an increase in general mutation rate. The mutagenesis seen in a few revertants has been attributed to the error-prone polymerase DinB, whose removal reduces overall revertant number only 4-fold (McKenzie et al. 2001). When DinB is eliminated, the number of stable revertants drops 10-fold, while unstable revertant number is unaffected. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The origin of mutations under selection has been intensively studied using the Cairns-Foster system, in which cells of an Escherichia coli lac mutant are plated on lactose and give rise to 100 Lac+ revertants over several days. These revertants have been attributed variously to stress-induced mutagenesis of nongrowing cells or to selective improvement of preexisting weakly Lac+ cells with no mutagenesis. Most revertant colonies (90%) contain stably Lac+ cells, while others (10%) contain cells with an unstable amplification of the leaky mutant lac allele. Evidence is presented that both stable and unstable Lac+ revertant colonies are initiated by preexisting cells with multiple copies of the F′lac plasmid, which carries the mutant lac allele. The tetracycline analog anhydrotetracycline (AnTc) inhibits growth of cells with multiple copies of the tetA gene. Populations with tetA on their F′lac plasmid include rare cells with an elevated plasmid copy number and multiple copies of both the tetA and lac genes. Pregrowth of such populations with AnTc reduces the number of cells with multiple F′lac copies and consequently the number of Lac+ colonies appearing under selection. Revertant yield is restored rapidly by a few generations of growth without AnTc. We suggest that preexisting cells with multiple F′lac copies divide very little under selection but have enough energy to replicate their F′lac plasmids repeatedly until reversion initiates a stable Lac+ colony. Preexisting cells whose high-copy plasmid includes an internal lac duplication grow under selection and produce an unstable Lac+ colony. In this model, all revertant colonies are initiated by preexisting cells and cannot be stress induced.
    Genetics 08/2014; 198(3). DOI:10.1534/genetics.114.170068 · 5.96 Impact Factor
  • Source
    • "Beyond induction of SOS by various genotoxic stresses, the SOS machinery also appears to play a role in facilitating mutagenesis and thereby adaptation to adverse conditions. For instance, presence of an unusable carbon source causes a subset of E.coli cells to undergo double-strand breaks that induces SOS [11]. Recombination across these break sites generates substrates for Pol IV (DinB), a SOS induced polymerase that synthesizes DNA across templates with bulged out nucleotides [12]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The bacterial SOS response is an elaborate program for DNA repair, cell cycle regulation and adaptive mutagenesis under stress conditions. Using sensitive sequence and structure analysis, combined with contextual information derived from comparative genomics and domain architectures, we identify two novel domain superfamilies in the SOS response system. We present evidence that one of these, the SOS response associated peptidase (SRAP; Pfam: DUF159) is a novel thiol autopeptidase. Given the involvement of other autopeptidases, such as LexA and UmuD, in the SOS response, this finding suggests that multiple structurally unrelated peptidases have been recruited to this process. The second of these, the ImuB-C superfamily, is linked to the Y-family DNA polymerase-related domain in ImuB, and also occurs as a standalone protein. We present evidence using gene neighborhood analysis that both these domains function with different mutagenic polymerases in bacteria, such as Pol IV (DinB), Pol V (UmuCD) and ImuA-ImuB-DnaE2 and also other repair systems, which either deploy Ku and an ATP-dependent ligase or a SplB-like radical SAM photolyase. We suggest that the SRAP superfamily domain functions as a DNA-associated autoproteolytic switch that recruits diverse repair enzymes upon DNA damage, whereas the ImuB-C domain performs a similar function albeit in a non-catalytic fashion. We propose that C3Orf37, the eukaryotic member of the SRAP superfamily, which has been recently shown to specifically bind DNA with 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxycytosine, is a sensor for these oxidized bases generated by the TET enzymes from methylcytosine. Hence, its autoproteolytic activity might help it act as a switch that recruits DNA repair enzymes to remove these oxidized methylcytosine species as part of the DNA demethylation pathway downstream of the TET enzymes. Reviewers This article was reviewed by RDS, RF and GJ.
    Biology Direct 08/2013; 8(1):20. DOI:10.1186/1745-6150-8-20 · 4.66 Impact Factor
Show more