Article

The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity.

Department of Internal Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
Nature Medicine (Impact Factor: 28.05). 09/2001; 7(8):941-6. DOI: 10.1038/90984
Source: PubMed

ABSTRACT Adiponectin is an adipocyte-derived hormone. Recent genome-wide scans have mapped a susceptibility locus for type 2 diabetes and metabolic syndrome to chromosome 3q27, where the gene encoding adiponectin is located. Here we show that decreased expression of adiponectin correlates with insulin resistance in mouse models of altered insulin sensitivity. Adiponectin decreases insulin resistance by decreasing triglyceride content in muscle and liver in obese mice. This effect results from increased expression of molecules involved in both fatty-acid combustion and energy dissipation in muscle. Moreover, insulin resistance in lipoatrophic mice was completely reversed by the combination of physiological doses of adiponectin and leptin, but only partially by either adiponectin or leptin alone. We conclude that decreased adiponectin is implicated in the development of insulin resistance in mouse models of both obesity and lipoatrophy. These data also indicate that the replenishment of adiponectin might provide a novel treatment modality for insulin resistance and type 2 diabetes.

5 Bookmarks
 · 
470 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since the initial observation that a calorie-restricted (CR) diet can extend rodent lifespan, many genetic and pharmaceutical interventions that also extend lifespan in mammals have been discovered. The mechanism by which CR and these other interventions extend lifespan is the subject of significant debate and research. One proposed mechanism is that CR promotes longevity by increasing insulin sensitivity, but recent findings that dissociate longevity and insulin sensitivity cast doubt on this hypothesis. These findings can be reconciled if longevity is promoted not via increased insulin sensitivity, but instead via decreased PI3K/Akt/mTOR pathway signaling. This review presents a unifying hypothesis that explains the lifespan-extending effects of a variety of genetic mutations and pharmaceutical interventions and points towards new molecular pathways which may also be leveraged to promote healthy aging.
    SpringerPlus 01/2014; 3:735. DOI:10.1186/2193-1801-3-735
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The high morbidity of metabolic dysfunction diseases has heightened interest in seeking natural and safe compounds to maintain optimal health. γ-Oryzanol (OZ), the ferulic acid (FA) ester with phytosterols, mainly present in rice bran has been shown to improve markers of metabolic syndrome. This study investigates the effects of FA and OZ on alleviating high-fat and high-fructose diet (HFFD)-induced metabolic syndrome parameters. Male SD rats were fed with a regular rodent diet, HFFD, or HFFD supplemented with 0.05% FA or 0.16% OZ (equimolar concentrations) for 13 weeks. Food intake, organ indices, serum lipid profiles, glucose metabolism, insulin resistance (IR) index and cytokine levels were analyzed. The mechanisms were further investigated in oleic acid-stimulated HepG2 cells by analyzing triglyceride (TG) content and lipogenesis-related gene expressions. In the in vivo study, FA and OZ exhibited similar effects in alleviating HFFD-induced obesity, hyperlipidemia, hyperglycemia, and IR. However, only OZ treatment significantly decreased liver index and hepatic TG content, lowered serum levels of C-reactive protein and IL-6, and increased serum concentration of adiponectin. In the in vitro assay, only OZ administration significantly inhibited intracellular TG accumulation and down-regulated expression of stearoyl coenzyme-A desaturase-1, which might facilitate OZ to enhance its hepatoprotective effect. OZ is more effective than FA in inhibiting hepatic fat accumulation and inflammation. Thus, FA and OZ could be used as dietary supplements to alleviate the deleterious effects of HFFD.
    PLoS ONE 02/2015; 10(2):e0118135. DOI:10.1371/journal.pone.0118135 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Little is known about the potential role of lifestyle factors in sex differences in insulin resistance in late elementary school children. In this cross-sectional study, we compared sex differences in Tanner scales, body fat, physical activity (PA) and fitness, and insulin resistance markers in elementary school children (boys, n = 69 and girls, n = 81) aged 12-13 years. Body composition was assessed with a standardized protocol. Cardiorespiratory fitness was measured as oxygen consumption during an incremental treadmill exercise. Fasting blood samples were collected for blood chemistry assays including lipids, glucose, insulin and homeostasis model assessment for insulin resistance (HOMA-IR), leptin, and adiponectin. Daily PA was measured with an accelerometer for 7 consecutive days, and they were classified as low-, moderate-, and vigorous-PA. Independent t-tests were used to compare mean differences in the measured variables between boys and girls. There were significant sex differences in Tanner scales, body mass index, percent body fat, and waist circumference (WC). Girls had significantly higher values in Tanner scales (p < 0.001) and percent body fat (p < 0.001) than boys. Boys had significantly higher values in body mass index (p = 0.019) and waist circumference (p < 0.001) than girls. Boys also had significantly higher values in VO2max (p < 0.001) and low (p < 0.001), moderate (p < 0.001), and vigorous (p < 0.001) PAs. With respect to metabolic risk factors, girls had significantly higher serum levels of triglycerides (p = 0.005), insulin (p < 0.001), and HOMA-IR (p < 0.001) and significantly lower high-density lipoprotein cholesterol (p = 0.015) than boys. In summary, the current findings of the study showed that the increased risk for insulin resistance in girls over boys is associated with higher Tanner scale and percent body fat in conjunction with poor cardiorespiratory fitness and physical inactivity, suggesting that exercise intervention to promote physical activity and fitness is imperative for general health promotion of school children, with a special focus on girls.