Article

Spectral characteristics of rice plants infested by brown planthoppers.

Taiwan Agricultural Research Institute (TARI), Taichung, ROC.
Proceedings of the National Science Council, Republic of China. Part B, Life sciences 08/2001; 25(3):180-6.
Source: PubMed

ABSTRACT Spectral characteristics of rice plants at various levels of infestation by the brown planthopper, Nilaparvata lugens (Stål), (Homoptera:Delphacidae), in the early grain-filling stage were measured and analyzed using a spectroradiometer. Plant damage was classified into six scales, i.e., 0 (CK), 1, 3, 5, 7 and 9, based on the scale of infestation displayed on the surfaces of plant parts. Results showed that mean curves of reflectance spectra (350 - 1800 nm) from different scales of insect infestation were clearly differentiated, especially in the region of 737 - 925 nm, where reflectance was in the order of severity. There were significant differences in reflectance among infestations at wavelengths of 755 and 890 nm particularly. Spectral parameters such as the normalized difference vegetation index (NDVI) and cumulative reflectance may also be used to discriminate levels of infestation. Twelve wavelengths from apparent peaks and valleys of individual spectra were selected as characteristic wavelengths making up the spectral signature of each infestation.

2 Followers
 · 
122 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Remote sensing is being increasingly used in different agricultural applications. Hyperspectral remote sensing in large continuous narrow wavebands provides significant advancement in understanding the subtle changes in biochemical and biophysical attributes of the crop plants and their different physiological processes, which otherwise are indistinct in multispectral remote sensing. This article describes spectral properties of vegetation both in the optical and thermal range of the electromagnetic spectrum as affected by its attributes. Different methods have been discussed to reduce data dimension and minimize the information redundancy. Potential applications of hyperspectral remote sensing in agriculture, i.e. spectral discrimination of crops and their genotypes, quantitative estimation of different biophysical and biochemical parameters through empirical and physical modelling, assessing abiotic and biotic stresses as developed by different researchers in India and abroad are described.
    Current science 03/2015; 108(5):848-859. · 0.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have used fluorescence imaging spectroscopy to investigate Huanglongbing disease in USA and Brazil. Texture features were extracted and used as input into classifier. Results show differences between leaves collected in Brazil and USA.
    Frontiers in Optics; 10/2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Remote sensing is being increasingly used in different agricultural applications. Hyperspectral remote sensing in large continuous narrow wavebands provides significant advancement in understanding the subtle changes in biochemical and biophysical attributes of the crop plants and their different physiological processes, which otherwise are indistinct in multispectral remote sensing. This article describes spectral properties of vegetation both in the optical and thermal range of the electromagnetic spectrum as affected by its attributes. Different methods have been discussed to reduce data dimension and minimize the information redundancy. Potential applications of hyperspectral remote sensing in agriculture, i.e. spectral discrimination of crops and their genotypes, quantitative estimation of different biophysical and biochemical parameters through empirical and physical modelling, assessing abiotic and biotic stresses as developed by different researchers in India and abroad are described.
    Current science 03/2015; 108(5):848-859. · 0.83 Impact Factor