Sensitive and simple determination of mannitol in human brain tissues by gas chromatography-mass spectrometry.

Department of Forensic Pathology and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
Journal of chromatography. B, Biomedical sciences and applications 08/2001; 758(1):103-8. DOI: 10.1016/S0378-4347(01)00145-1
Source: PubMed

ABSTRACT A simple, reliable and sensitive gas chromatographic-mass spectrometric method was devised to determine the level of mannitol in various human brain tissues obtained at autopsy. Mannitol was extracted with 10% trichloroacetic acid solution which effectively precipitated brain tissues. The supernatant was washed with tert.-butyl methyl ether to remove other organic compounds and to neutralize the aqueous solution. Mannitol was then derivatized with 1-butaneboronic acid and subjected to GC-MS. Erythritol was used as an internal standard. For quantitation, selected ion monitoring with m/z 127 and 253 for mannitol and m/z 127 for internal standard were used. Calibration curves were linear in concentration range from 0.2 to 20 microg/0.1 g and correlation coefficients exceeded 0.99. The lower detection limit of mannitol in distilled water was 1 ng/0.1 g. Mannitol was detected in control brain tissues, as a biological compound, at a level of 50 ng/0.1 g. The precision of this method was examined with use of two different concentrations, 2 and 20 microg/0.1 g, and the relative standard deviation ranged from 0.8 to 8.3%. We used this method to determine mannitol in brain tissues from an autopsied individual who had been clinically diagnosed as being brain dead. Cardiac arrest occurred 4 days later.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Analysis of solid matrices are typically requested to help understand drug and/or metabolites concentrations at potential sites of action or toxicology, or to perform distribution studies when radiolabel is unavailable or cannot be used. Solid samples pose additional challenges for bioanalysis in terms of preparation of homogeneous QC pools, estimation of extraction recovery, supply of control matrix, and as methods may be complex and time-consuming to perform. A short literature survey is presented together with examples of tissue assays for discovery, GLP and clinical studies.
    Chromatographia 01/2004; 59:S149-S156. · 1.44 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A method for simultaneous determination of glycerol and mannitol in various human tissues was devised and for this we used high-performance liquid chromatography (HPLC). Specimens were homogenized in a mixture of chloroform and methanol, phosphate buffer (pH 7.0) and pentaerythritol (IS) solution. After centrifugation, an aliquot of the aqueous layer was evaporated to dryness and derivatized with p-nitrobenzoyl chloride at 50 degrees C for 1h, then applied to HPLC with analytical conditions of: column, CAPCELL PAK C18 MG (250 mm x 3.0 mm i.d., 5 microm, Shiseido Co. Ltd., Tokyo, Japan); column temperature, 1-2 degrees C; mobile phase, 75% acetonitrile-distilled water containing 0.05% trifluoroacetic acid, 0.05% heptafluoro-n-butyric acid and 0.1% triethylamine; flow rate, 0.5 ml/min; wavelength, 260 nm. Calibration curves for both substances were linear in concentration ranges from 1 to 500 microg/0.1g and correlation coefficients exceeded 0.99. The relative standard deviation (R.S.D.) of the method was evaluated at concentrations of 10 and 100 microg/0.1g, and ranged from 0.84 to 10.6%. Using this method, we determined the regional distribution levels of glycerol and mannitol in various tissues from an autopsied brain dead man.
    Forensic Science International 03/2002; 125(2-3):127-33. · 2.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The dilution enthalpies of D-mannitol and D-sorbitol in aqueous sodium chloride solution at various concentrations have been determined by isothermal microcalorimetry at 298.15 K. The homogeneous enthalpic interaction coefficients over a quite large range of concentration of aqueous sodium chloride solutions have been calculated according to the excess enthalpy concept. The results show that enthalpic pairwise interaction coefficients (h 2) of D-mannitol and D-sorbitol are positive in aqueous sodium chloride solution and become more positive with increase of the concentration of sodium chloride. The results are interpreted in terms of the different conformations of the two polyols, solute-solute and solute-solvent interactions involved by solvent effects.
    Journal of Thermal Analysis and Calorimetry 06/2007; 89(1):295-301. · 1.98 Impact Factor

Akiko Shimamoto