Article

Mutations in the novel protocadherin PCDH15 cause Usher syndrome type 1F.

Department of Pediatrics, Rainbow Babies and Children's Hospital, University Hospitals of Cleveland, Case Western Reserve University, Cleveland, OH, USA.
Human Molecular Genetics (Impact Factor: 6.68). 09/2001; 10(16):1709-18. DOI: 10.1093/hmg/10.16.1709
Source: PubMed

ABSTRACT We have determined the molecular basis for Usher syndrome type 1F (USH1F) in two families segregating for this type of syndromic deafness. By fluorescence in situ hybridization, we placed the human homolog of the mouse protocadherin Pcdh15 in the linkage interval defined by the USH1F locus. We determined the genomic structure of this novel protocadherin, and found a single-base deletion in exon 10 in one USH1F family and a nonsense mutation in exon 2 in the second. Consistent with the phenotypes observed in these families, we demonstrated expression of PCDH15 in the retina and cochlea by RT-PCR and immunohistochemistry. This report shows that protocadherins are essential for maintenance of normal retinal and cochlear function.

2 Bookmarks
 · 
103 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Loss of function variants in the PCDH15 gene can cause Usher syndrome type 1F, an autosomal recessive disease associated with profound congenital hearing loss, vestibular dysfunction, and retinitis pigmentosa. The Ashkenazi Jewish population has an increased incidence of Usher syndrome type 1F (founder variant p.Arg245X accounts for 75% of alleles), yet the variant spectrum in a panethnic population remains undetermined. We sequenced the coding region and intron-exon borders of PCDH15 using next-generation DNA sequencing technology in approximately 14,000 patients from fertility clinics. More than 600 unique PCDH15 variants (single nucleotide changes and small indels) were identified, including previously described pathogenic variants p.Arg3X, p.Arg245X (five patients), p.Arg643X, p.Arg929X, and p.Arg1106X. Novel truncating variants were also found, including one in the N-terminal extracellular domain (p.Leu877X), but all other novel truncating variants clustered in the exon 33 encoded C-terminal cytoplasmic domain (52 patients, 14 variants). One variant was observed predominantly in African Americans (carrier frequency of 2.3%). The high incidence of truncating exon 33 variants indicates that they are unlikely to cause Usher syndrome type 1F even though many remove a large portion of the gene. They may be tolerated because PCDH15 has several alternate cytoplasmic domain exons and differentially spliced isoforms may function redundantly. Effects of some PCDH15 truncating variants were addressed by deep sequencing of a panethnic population.
    Journal of Molecular Diagnostics 11/2014; 16(6):673–678. DOI:10.1016/j.jmoldx.2014.07.001 · 3.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report on a 1-year-old boy with microcephaly with a simplified gyral pattern, early-onset seizures, congenital hearing loss and a severe developmental delay. Trio-based whole-exome sequencing identified candidate compound heterozygous mutations in two genes: c.163G>T (p.Ala55Ser) and c.874G>A (p.Gly292Arg) in polynucleotide kinase 3'-phosphatase gene (PNKP), and c.195G>A (p.Met65Ile) and c.1210A>C (p.Ser404Arg) in PCDH15. PNKP and PCDH15 mutations have been reported in autosomal recessive microcephaly with early-onset seizures and developmental delay syndrome, and Usher syndrome type 1F, respectively. Our patient showed neurological features similar to reported cases of both syndromes that could be explained by the observed mutations in both PNKP and PCDH15, which therefore appear to be pathogenic in this case.Journal of Human Genetics advance online publication, 26 June 2014; doi:10.1038/jhg.2014.51.
    Journal of Human Genetics 06/2014; 59(8). DOI:10.1038/jhg.2014.51 · 2.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The tip link protein protocadherin 15 (PCDH15) is a central component of the mechanotransduction complex in auditory and vestibular hair cells. PCDH15 is hypothesized to relay external forces to the mechanically gated channel located near its cytoplasmic C terminus. How PCDH15 is coupled to the transduction machinery is not clear. Using a membrane-based two-hybrid screen to identify proteins that bind to PCDH15, we detected an interaction between zebrafish Pcdh15a and an N-terminal fragment of transmembrane channel-like 2a (Tmc2a). Tmc2a is an ortholog of mammalian TMC2, which along with TMC1 has been implicated in mechanotransduction in mammalian hair cells. Using the above-mentioned two-hybrid assay, we found that zebrafish Tmc1 and Tmc2a can interact with the CD1 or CD3 cytoplasmic domain isoforms of Pcdh15a, and this interaction depends on the common region shared between the two Pcdh15 isoforms. Moreover, an interaction between mouse PCDH15-CD3 and TMC1 or TMC2 was observed in both yeast two-hybrid assays and coimmunoprecipitation experiments. To determine whether the Pcdh15-Tmc interaction is relevant to mechanotransduction in vivo, we overexpressed N-terminal fragments of Tmc2a in zebrafish hair cells. Overexpression of the Tmc2a N terminus results in mislocalization of Pcdh15a within hair bundles, together with a significant decrease in mechanosensitive responses, suggesting that a Pcdh15a-Tmc complex is critical for mechanotransduction. Together, these results identify an evolutionarily conserved association between the fish and mouse orthologs of PCDH15 and TMC1 and TMC2, supporting the notion that TMCs are key components of the transduction complex in hair cells.
    Proceedings of the National Academy of Sciences 08/2014; 111(35). DOI:10.1073/pnas.1402152111 · 9.81 Impact Factor

Full-text

Download
60 Downloads
Available from
Jun 3, 2014