Four tyrosine residues in phospholipase C-gamma 2, identified as Btk-dependent phosphorylation sites, are required for B cell antigen receptor-coupled calcium signaling.

Osaka University Medical School, Department of Molecular Medicine, 2-2 Yamada-oka, Suita City, Osaka 565-0871, Japan.
Journal of Biological Chemistry (Impact Factor: 4.6). 11/2001; 276(42):38595-601. DOI: 10.1074/jbc.M103675200
Source: PubMed

ABSTRACT Activation of phospholipase C-gamma2 (PLCgamma2) is the critical step in B cell antigen receptor (BCR)-coupled calcium signaling. Although genetic dissection experiments on B cells have demonstrated that Bruton's tyrosine kinase (Btk) and Syk are required for activating PLCgamma2, the exact activation mechanism of PLCgamma2 by these kinases has not been established. We identify the tyrosine residues 753, 759, 1197, and 1217 in rat PLCgamma2 as Btk-dependent phosphorylation sites by using an in vitro kinase assay. To evaluate the role of these tyrosine residues in phosphorylation-dependent activation of PLCgamma2, PLCgamma2-deficient DT40 cells were reconstituted with a series of mutant PLCgamma2s in which the phenylalanine was substituted for tyrosine. Substitution of all four tyrosine residues almost completely eliminated the BCR-induced PLCgamma2 phosphorylation, indicating that these residues include the major phosphorylation sites upon BCR engagement. Cells expressing PLCgamma2 with a single substitution exhibited some extent of reduction in calcium mobilization, whereas those expressing quadruple mutant PLCgamma2 showed greatly reduced calcium response. These findings indicate that the phosphorylations of the tyrosine residues 753, 759, 1197, and 1217, which have been identified as Btk-dependent phosphorylation sites in vitro, coordinately contribute to BCR-induced activation of PLCgamma2.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Protein phosphorylation plays a critical role in normal cellular function and is often subverted in disease. Al- though major advances have recently been made in iden- tification and quantitation of protein phosphorylation sites by MS, current methodological limitations still preclude routine, easily usable, and comprehensive quantitative analysis of protein phosphorylation. Here we report a sim- ple LC-MS method to quantify gel-separated proteins and their sites of phosphorylation; in this approach, integrated chromatographic peak areas of peptide analytes from proteins under study are normalized to those of a non- isotopically labeled internal standard protein spiked into the excised gel samples just prior to in-gel digestion. The internal standard intensities correct for differences in en- zymatic activities and sample losses that may occur dur- ing the processes of in-gel digestion and peptide extrac- tion from the gel pieces. We used this method of peak area measurement with an internal standard to investi- gate the effects of pervanadate on protein phosphoryla- tion in the WEHI-231 B cell lymphoma cell line and to assess the role of phosphoinositide 3-kinase (PI3K) in these phosphorylation events. Phosphoproteins, isolated from total cell lysates using IMAC or by immunoprecipi- tation using Tyr(P) antibodies, were analyzed using this method, leading to identification of >400 proteins, several of which were found at higher levels in phosphoprotein fractions after pervanadate treatment. Pretreatment of cells with the PI3K inhibitor wortmannin reduced the phosphorylation level of certain proteins (e.g. STAT1 and phospholipase C2) while increasing the phosphorylation of several others. Peak area measurement with an internal standard was also used to follow the dynamics of PI3K- dependent and -independent changes in the post-trans- lational modification of both known and novel phospho- lipase C2 phosphorylation sites. Our results illustrate the capacity of this conceptually simple LC-MS method for quantification of gel-separated proteins and their phos- phorylation sites and for quantitative profiling of biologi- cal systems. Molecular & Cellular Proteomics 4: 1038-1051, 2005.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Majority of patients with indolent B-cell lymphoma fail to achieve complete remission with current approaches and invariably relapse. During the last decade, innovative chemoimmunotherapy strategies have substantially improved disease control rates but not survival thus providing the rationale for development of novel agents targeting dysregulated pathways that are operable in these hematological malignancies. Ibrutinib, a novel first-in-human BTK inhibitor, has progressed into phase III trials after early phase clinical studies demonstrated effective target inhibition, increased tumor response rates, and significant improvement in survival particularly in patients with indolent B-cell lymphomas. Recently, the compound was designated a ‘breakthrough therapy’ by the FDA for the treatment of patients with relapsed/refractory MCL and WM. This review summarizes recent achievements of ibrutinib, with a focus on its emerging role in the treatment of patients with indolent B-cell lymphoid malignancies.
    Clinical lymphoma, myeloma & leukemia 01/2013;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bruton's tyrosine kinase (Btk) modulates B-cell development and activation, and plays an important role in antibody production. Interestingly, Btk may also affect human osteoclast (OC) function, however, the mechanism was unknown. Here we studied a potent and specific Btk inhibitor, CC-292, in multiple myeloma (MM). In this report, we demonstrate that, although CC-292 increased OC differentiation, it inhibited OC function via inhibition of c-Src, Pyk2 and cortactin, all involved in OC sealing zone formation. Because CC-292 did not show potent in vitro anti-MM activity, we next evaluated it in combination with the proteasome inhibitor, carfilzomib. We first studied the effect of carfilzomib on OC. Carfilzomib did not impact OC sealing zone formation but significantly inhibited OC differentiation. CC-292 combined with carfilzomib inhibited both sealing zone formation and OC differentiation, resulting in more profound inhibition of OC function than carfilzomib alone. Moreover, the combination treatment in an in vivo MM mouse model inhibited tumor burden compared with CC-292 alone; it also increased bone volume compared with carfilzomib alone. These results suggest that CC-292 combined with carfilzomib augments the inhibitory effects against OC within the bone microenvironment and has promising therapeutic potential for the treatment of MM and related bone disease.Leukemia accepted article preview online, 12 February 2014; doi:10.1038/leu.2014.69.
    Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, U.K 02/2014; · 10.16 Impact Factor