Article

Four tyrosine residues in phospholipase C-gamma 2, identified as Btk-dependent phosphorylation sites, are required for B cell antigen receptor-coupled calcium signaling.

Osaka University Medical School, Department of Molecular Medicine, 2-2 Yamada-oka, Suita City, Osaka 565-0871, Japan.
Journal of Biological Chemistry (Impact Factor: 4.65). 11/2001; 276(42):38595-601. DOI:10.1074/jbc.M103675200
Source: PubMed

ABSTRACT Activation of phospholipase C-gamma2 (PLCgamma2) is the critical step in B cell antigen receptor (BCR)-coupled calcium signaling. Although genetic dissection experiments on B cells have demonstrated that Bruton's tyrosine kinase (Btk) and Syk are required for activating PLCgamma2, the exact activation mechanism of PLCgamma2 by these kinases has not been established. We identify the tyrosine residues 753, 759, 1197, and 1217 in rat PLCgamma2 as Btk-dependent phosphorylation sites by using an in vitro kinase assay. To evaluate the role of these tyrosine residues in phosphorylation-dependent activation of PLCgamma2, PLCgamma2-deficient DT40 cells were reconstituted with a series of mutant PLCgamma2s in which the phenylalanine was substituted for tyrosine. Substitution of all four tyrosine residues almost completely eliminated the BCR-induced PLCgamma2 phosphorylation, indicating that these residues include the major phosphorylation sites upon BCR engagement. Cells expressing PLCgamma2 with a single substitution exhibited some extent of reduction in calcium mobilization, whereas those expressing quadruple mutant PLCgamma2 showed greatly reduced calcium response. These findings indicate that the phosphorylations of the tyrosine residues 753, 759, 1197, and 1217, which have been identified as Btk-dependent phosphorylation sites in vitro, coordinately contribute to BCR-induced activation of PLCgamma2.

0 0
 · 
0 Bookmarks
 · 
63 Views
  • [show abstract] [hide abstract]
    ABSTRACT: Majority of patients with indolent B-cell lymphoma fail to achieve complete remission with current approaches and invariably relapse. During the last decade, innovative chemoimmunotherapy strategies have substantially improved disease control rates but not survival thus providing the rationale for development of novel agents targeting dysregulated pathways that are operable in these hematological malignancies. Ibrutinib, a novel first-in-human BTK inhibitor, has progressed into phase III trials after early phase clinical studies demonstrated effective target inhibition, increased tumor response rates, and significant improvement in survival particularly in patients with indolent B-cell lymphomas. Recently, the compound was designated a ‘breakthrough therapy’ by the FDA for the treatment of patients with relapsed/refractory MCL and WM. This review summarizes recent achievements of ibrutinib, with a focus on its emerging role in the treatment of patients with indolent B-cell lymphoid malignancies.
    Clinical lymphoma, myeloma & leukemia 01/2013;
  • [show abstract] [hide abstract]
    ABSTRACT: Signalling through the B cell receptor (BCR) is central to the development and maintenance of B cells. In light of the numerous proliferative and survival pathways activated downstream of the BCR, it comes as no surprise that malignant B cells would co-opt this receptor to promote their own growth and survival. However, direct evidence for BCR signalling in human lymphoma has only come to light recently. Roles for antigen-dependent and antigen-independent, or tonic, BCR signalling have now been described for several different lymphoma subtypes. Furthermore, correlative data implicate antigen-dependent BCR signalling in many other forms of lymphoma. A host of therapeutic agents targeting effectors of the BCR signalling pathway are now in clinical trials and have shown initial success against multiple forms of lymphoma.
    dressNature Reviews Drug Discovery 03/2013; 12(3):229-43. · 33.08 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Bruton's tyrosine kinase (Btk) modulates B-cell development and activation, and plays an important role in antibody production. Interestingly, Btk may also affect human osteoclast (OC) function, however, the mechanism was unknown. Here we studied a potent and specific Btk inhibitor, CC-292, in multiple myeloma (MM). In this report, we demonstrate that, although CC-292 increased OC differentiation, it inhibited OC function via inhibition of c-Src, Pyk2 and cortactin, all involved in OC sealing zone formation. Because CC-292 did not show potent in vitro anti-MM activity, we next evaluated it in combination with the proteasome inhibitor, carfilzomib. We first studied the effect of carfilzomib on OC. Carfilzomib did not impact OC sealing zone formation but significantly inhibited OC differentiation. CC-292 combined with carfilzomib inhibited both sealing zone formation and OC differentiation, resulting in more profound inhibition of OC function than carfilzomib alone. Moreover, the combination treatment in an in vivo MM mouse model inhibited tumor burden compared with CC-292 alone; it also increased bone volume compared with carfilzomib alone. These results suggest that CC-292 combined with carfilzomib augments the inhibitory effects against OC within the bone microenvironment and has promising therapeutic potential for the treatment of MM and related bone disease.Leukemia accepted article preview online, 12 February 2014; doi:10.1038/leu.2014.69.
    Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, U.K 02/2014; · 10.16 Impact Factor

D Watanabe