Article

Memory consolidation of Pavlovian fear conditioning: a cellular and molecular perspective.

W.M. Keck Foundation, Laboratory of Neurobiology, Center for Neural Science, New York University, New York, NY 10003, USA.
Trends in Neurosciences (Impact Factor: 12.9). 10/2001; 24(9):540-6. DOI: 10.1016/S0166-2236(00)01969-X
Source: PubMed

ABSTRACT Pavlovian fear conditioning has emerged as a leading behavioral paradigm for studying the neurobiological basis of learning and memory. Although considerable progress has been made in understanding the neural substrates of fear conditioning at the systems level, until recently little has been learned about the underlying cellular and molecular mechanisms. The success of systems-level work aimed at defining the neuroanatomical pathways underlying fear conditioning, combined with the knowledge accumulated by studies of long-term potentiation (LTP), has recently given way to new insights into the cellular and molecular mechanisms that underlie acquisition and consolidation of fear memories. Collectively, these findings suggest that fear memory consolidation in the amygdala shares essential biochemical features with LTP, and hold promise for understanding the relationship between memory consolidation and synaptic plasticity in the mammalian brain.

0 Followers
 · 
80 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Curcumin, a yellow-pigment compound found in the popular Indian spice turmeric (Curcuma longa), has been extensively investigated for its anti-inflammatory, chemopreventative and antidepressant properties.Here, we examined the efficacy of dietary curcumin at impairing the consolidation and reconsolidation of a Pavlovian fear memory, a widely studied animal model of traumatic memory formation in post-traumatic stress disorder (PTSD).We show that a diet enriched with 1.5% curcumin preventsthe training-related elevation in the expression of the immediate early genes (IEGs) Arc/Arg3.1 and Egr-1 in the lateral amygdala (LA)and impairs the'consolidation' of an auditory Pavlovian fear memory; short-term memory (STM) is intact, while long-term memory (LTM) is significantly impaired. Next, we show that dietary curcuminimpairs the 'reconsolidation' of a recently formed auditory Pavlovian fear memory; fear memory retrieval (reactivation)and post-reactivation (PR)-STM are intact, while PR-LTM is significantly impaired. Additional experiments revealed that dietary curcumin is also effective at impairing the reconsolidation of an older, well-consolidated fear memory. Further, we observed that fear memories that fail to reconsolidate under the influence of dietary curcumin are impaired in an enduring manner; unlike extinguished fear memories they are not subject to reinstatement or renewal. Collectively, our findings indicate that a diet enriched with curcumin is capable of impairing fear memory consolidation and reconsolidation processes, findings which may have important clinical implications for the treatment of disorders such as PTSD that are characterized by unusually strong and persistently reactivated fear memories.Neuropsychopharmacology accepted article preview online, 28 November 2014. doi:10.1038/npp.2014.315.
    Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 11/2014; 40(5). DOI:10.1038/npp.2014.315 · 7.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Antagonism of group I metabotropic glutamate receptors (mGluR 1 and mGluR5) reduces behavioral effects of drugs of abuse, including cocaine. However, the underlying mechanisms remain poorly understood. Activation of mGluR5 increases protein synthesis at synapses, and mGluR5-induced excessive protein synthesis has been implicated in the pathology of fragile X syndrome. It remains unknown whether group I mGluR-mediated protein synthesis is involved in any behavioral effects of drugs of abuse. We report that group I mGluR agonist DHPG induced more pronounced initial depression of inhibitory postsynaptic currents (IPSCs) followed by modest long-term depression (I-LTD) in dopamine neurons of rat ventral tegmental area (VTA) through the activation of mGluR1. The early component of DHPG-induced depression of IPSCs was mediated by the cannabinoid CB(1) receptors, while DHPG-induced I-LTD was dependent on protein synthesis. Western blotting analysis indicates that mGluR1 was coupled to extracellular signal-regulated kinase (ERK) and mammalian target of rapamycin (mTOR) signaling pathways to increase translation. We also show that cocaine conditioning activated translation machinery in the VTA via an mGluR1-dependent mechanism. Furthermore, intra-VTA microinjections of mGluR1 antagonist JNJ16259685 and protein synthesis inhibitor cycloheximide significantly attenuated or blocked the acquisition of cocaine-induced conditioned place preference (CPP) and activation of translation elongation factors. Taken together, these results suggest that mGluR1 antagonism inhibits de novo protein synthesis; this effect may block the formation of cocaine-cue associations and thus provide a mechanism for the reduction in CPP to cocaine.Neuropsychopharmacology accepted article preview online, 24 January 2013; doi:10.1038/npp.2013.29.
    Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 01/2013; 38(7). DOI:10.1038/npp.2013.29 · 7.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is widely accepted that the amygdala plays a critical role in acquisition and consolidation of fear-related memories. Some of the more widely employed behavioral paradigms that have assisted in solidifying the amygdala's role in fear-related memories are associative learning paradigms. With most associative learning tasks, a neutral conditioned stimulus (CS) is paired with a salient unconditioned stimulus (US) that elicits an unconditioned response (UR). After multiple CS-US pairings, the subject learns that the CS predicts the onset or delivery of the US, and thus elicits a learned conditioned response (CR). Most fear-related associative paradigms have suggested that an aspect of the fear association is stored in the amygdala; however, some fear-motivated associative paradigms suggest that the amygdala is not a site of storage, but rather facilitates consolidation in other brain regions. Based upon various learning theories, one of the most likely sites for storage of long-term memories is the neocortex. In support of these theories, findings from our laboratory, and others, have demonstrated that trace-conditioning, an associative paradigm where there is a separation in time between the CS and US, induces learning-specific neocortical plasticity. The following review will discuss the amygdala's involvement, either as a site of storage or facilitating storage in other brain regions such as the neocortex, in fear- and non-fear-motivated associative paradigms. In this review, we will discuss recent findings suggesting a broader role for the amygdala in increasing the saliency of behaviorally relevant information, thus facilitating acquisition for all forms of memory, both fear- and non-fear-related. This proposed promiscuous role of the amygdala in facilitating acquisition for all memories further suggests a potential role of the amygdala in general learning disabilities.
    Frontiers in Integrative Neuroscience 10/2012; 6:92. DOI:10.3389/fnint.2012.00092