Article

Muc-1, integrin, and osteopontin expression during the implantation cascade in sheep.

Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX 77843-2471, USA.
Biology of Reproduction (Impact Factor: 3.45). 10/2001; 65(3):820-8.
Source: PubMed

ABSTRACT The extracellular matrix protein osteopontin (OPN) is a component of histotroph that increases in uterine flushings from pregnant ewes during the peri-implantation period and is localized on the apical surfaces of the uterine luminal epithelium (LE) and conceptus trophectoderm (Tr). The potential involvement of OPN in the implantation adhesion cascade in sheep was investigated by examining temporal, spatial, and potential functional relationships between OPN, Muc-1, and integrin subunits during the estrous cycle and early pregnancy. Immunoreactive Muc-1 was highly expressed at the apical surfaces of uterine luminal (LE) and glandular epithelium (GE) in both cycling and pregnant ewes but was decreased dramatically on LE by Day 9 and was nearly undetectable by Day 17 of pregnancy when intimate contact between LE and Tr begins. In contrast, integrin subunits alpha(v), alpha(4), alpha(5), beta(1), beta(3), and beta(5) were constitutively expressed on conceptus Tr and at the apical surface of uterine LE and GE in both cyclic and early pregnant ewes. The apical expression of these subunits could contribute to the apical assembly of several OPN receptors including the alpha(v)beta(3), alpha(v)beta(1), alpha(v)beta(5), alpha(4)beta(1), and alpha(5)beta(1) heterodimers on endometrial LE and GE, and conceptus Tr in sheep. Functional analysis of potential OPN interactions with conceptus and endometrial integrins was performed on LE and Tr cells in vitro using beads coated with OPN, poly-L-lysine, or recombinant OPN in which the Arg-Gly-Asp sequence was replaced with RGE or RAD. Transmembrane accumulation of talin or alpha-actinin at the apical surface of uterine LE and conceptus Tr cells in contact with OPN-coated beads revealed functional integrin activation and cytoskeletal reorganization in response to OPN binding. These results provide a physiological framework for the role of OPN, a potential mediator of implantation in sheep, as a bridge between integrin heterodimers expressed by Tr and uterine LE responsible for adhesion for initial conceptus attachment.

0 Followers
 · 
92 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Uterine adenogenesis, a unique post-natal event in mammals, is vulnerable to endocrine disruption by estrogens and progestins resulting in infertility or reduced prolificacy. The absence of uterine glands results in insufficient transport of nutrients into the uterine lumen to support conceptus development. Arginine, a component of histotroph, is substrate for production of nitric oxide, polyamines and agmatine and, with secreted phosphoprotein 1, it affects cytoskeletal organization of trophectoderm. Arginine is critical for development of the conceptus, pregnancy recognition signaling, implantation and placentation. Conceptuses of ungulates and cetaceans convert glucose to fructose which is metabolize via multiple pathways to support growth and development. However, high fructose corn syrup in soft drinks and foods may increase risks for metabolic disorders and increase insulin resistance in adults. Understanding endocrine disrupters and dietary substances, and novel pathways for nutrient metabolism during pregnancy can improve survival and growth, and prevent chronic metabolic diseases in offspring.
    Molecular and Cellular Endocrinology 09/2014; 398(1-2). DOI:10.1016/j.mce.2014.09.007 · 4.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND After recognition of its pivotal contribution to fetomaternal tolerance, the study of galectin-1 (gal-1) functions in the context of pregnancy became an attractive topic in reproductive medicine. Despite considerable advances in the understanding of the immuno- and growth-regulatory properties of gal-1 at the fetal-maternal interface, many functional aspects of this lectin in reproduction are only emerging.METHODS The published literature was searched using Pubmed focusing on gal-1 signalling and functional properties at the maternal-fetal interface, including data on its implication in pregnancy disorders and malignancies of the female reproductive system. Papers discussing animal and human studies were included.RESULTSThis review provides an overview of gal-1 functions during pregnancy, such as modulation of maternal immune responses and roles in embryo implantation and placentation. We also emphasize the role of gal-1 in key regulatory processes, including trophoblast migration, invasion, syncytium formation and expression of non-classical MHC class I molecules (HLA-G). In addition, we argue in favour of gal-1 pro-angiogenic properties, as observed in tumourigenesis and other pathological settings, and its implication in the angiogenesis process associated with early gestation.CONCLUSION The involvement of gal-1 in the regulation of different processes during the establishment, development and maintenance of pregnancy could be described as unique. Gal-1 has emerged as an important lectin with major functions in pregnancy.
    Human Reproduction Update 09/2013; DOI:10.1093/humupd/dmt040 · 8.66 Impact Factor
  • Source
    Reproduction Fertility and Development 08/2012; DOI:10.1071/RD12152 · 2.58 Impact Factor