Article

Early postnatal cardiac changes and premature death in transgenic mice overexpressing a mutant form of serum response factor.

Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Ave., Boston, MA 02215, USA.
Journal of Biological Chemistry (Impact Factor: 4.65). 11/2001; 276(43):40033-40. DOI: 10.1074/jbc.M104934200
Source: PubMed

ABSTRACT Serum response factor (SRF) is a key regulator of a number of extracellular signal-regulated genes important for cell growth and differentiation. A form of the SRF gene with a double mutation (dmSRF) was generated. This mutation reduced the binding activity of SRF protein to the serum response element and reduced the capability of SRF to activate the atrial natriuretic factor promoter that contains the serum response element. Cardiac-specific overexpression of dmSRF attenuated the total SRF binding activity and resulted in remarkable morphologic changes in the heart of the transgenic mice. These mice had dilated atrial and ventricular chambers, and their ventricular wall thicknesses were only 1/2 to 1/3 the thickness of that of nontransgenic mice. Also these mice had smaller cardiac myocytes and had less myofibrils in their myocytes relative to nontransgenic mice. Altered gene expression and slight interstitial fibrosis were observed in the myocardium of the transgenic mice. All the transgenic mice died within the first 12 days after birth, because of the early onset of severe, dilated cardiomyopathy. These results indicate that dmSRF overexpression in the heart apparently alters cardiac gene expression and blocks normal postnatal cardiac growth and development.

1 Bookmark
 · 
94 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During the last decade, the striated muscle activator of Rho signaling (STARS), a muscle-specific protein, has been proposed to play an increasingly important role in skeletal muscle growth, metabolism, regeneration and stress adaptation. STARS influences actin dynamics and, as a consequence, regulates the myocardin-related transcription factor A/serum response factor (MRTF-A/SRF) transcriptional program, a well-known pathway controlling skeletal muscle development and function. Muscle-specific stress conditions, such as exercise, positively regulates, while disuse and degenerative muscle diseases are associated with a downregulation of STARS and its downstream partners, suggesting a pivotal role for STARS in skeletal muscle health. This review provides a comprehensive overview of the known role and regulation of STARS and the members of its signaling pathway, RhoA, MRTF-A and SRF, in skeletal muscle.
    Pflügers Archiv - European Journal of Physiology 02/2014; · 4.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The protein p49/STRAP (SRFBP1) is a transcription cofactor of serum response factor (SRF) which regulates cytoskeletal and muscle-specific genes.
    BMC Cell Biology 09/2014; 15(1):32. · 2.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dysbindin is an established schizophrenia susceptibility gene thoroughly studied in the context of the brain. We have previously shown through a yeast two-hybrid screen that it is also a cardiac binding partner of the intercalated disc protein Myozap. Because Dysbindin is highly expressed in the heart, we aimed here at deciphering its cardiac function. Using a serum response factor (SRF) response element reporter-driven luciferase assay, we identified a robust activation of SRF signaling by Dysbindin overexpression that was associated with significant up-regulation of SRF gene targets, such as Acta1 and Actc1. Concurrently, we identified RhoA as a novel binding partner of Dysbindin. Further phenotypic and mechanistic characterization revealed that Dysbindin induced cardiac hypertrophy via RhoA-SRF and MEK1-ERK1 signaling pathways. In conclusion, we show a novel cardiac role of Dysbindin in the activation of RhoA-SRF and MEK1-ERK1 signaling pathways and in the induction of cardiac hypertrophy. Future in vivo studies should examine the significance of Dysbindin in cardiomyopathy.
    The Journal of Cell Biology 11/2013; 203(4):643-56. · 10.82 Impact Factor

Full-text

Download
18 Downloads
Available from
May 28, 2014